
RAi549 ARTIFICIAL INTELLIGENCE IN MAINTENANCE: PROCEEDINGS OF V-6RD-Ri45349 THE JOINT SERVICES..(U) DENVER RESEARCH INST CO JUN 8RFHRL-TR-84-25 F336i5-82-C-801

UNCLASSIFIED F/S 6/4 N

E mohhEmohEIniI

V6.

MICROCOPY RESOLUTION TEST CHART
I

- ' ' '

HAM MO BMEAU OF STANDARDS- 1963.-A
.

" -

IEEE..

III•II.

1111 125 -1
Ilium

;il -? '; -. '-i i- ' .-'- i. ' --:" : ."M ICROCOPYi. .. RES LU ION TEST CHAR

AFlIRL.TR494-25 June 1984

ARTIFICIAL INTELLIGENCE IN MAINTENANCE%
P ROCEEDINGS OF THE JOINT SERVICES WORKSHOP

'U

ARTIFICIAL INTEIGENCE

Q.4

C).5~

Approved for public release; distribution unhintted.

AIR FORCE SYSTEMS COMMAND
AIR FORCE HUMAN RESOURCES LABORATORY

BROOKS AIR FORCE BASE, TEXAS 78235

-.. :LI. 84 08 20 158 L

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than
in connection with a definitely Government-related procurement, the United States
Government incurs no responsibility or any obligation whatsoever. The fact that the
Government may have formulated or in any way supplied the said drawings, specifications,
or other data, is not to be regarded by implication, or otherwise in any manner construed,
as licensing the holder, or any other person or corporation; or as conveying any rights or
permission to manufacture, use, or sell any patented invention that may in any way be related
thereto.

The Public Affairs Office has reviewed this report, and it is releasable to the National
Technical Information Service, where it will be available to the general public, including
foreign nations.

This report has been reviewed and is approved for publication. '

BRIAN DALLMAN
Contract Monitor

JOSEPH Y. YASUTAKE, Technical Director
Training Systems Division

ANTHONY F. BRONZO, JR., Colonel, USAF
Commander

,

° L.

0

COPONENT PART NOTICE
THIS PAPER IS A COMPONENT PART OF THE FOLLOWms COMPILATION REPOwr.

(TITLE): Artificial Intelligencr in Maintenance: Procendings of thf Joint Srrviccs

Workshop Hrld at Boulder. Colorado on 4-6 October 1983.
,, ~~- A ,4L .

Nka SEP 1 71984
(SOURCE): Dp~nvtr IResoarch In-qt Cnorado

To ORDER THE COMPLETE COMPILATION REPORT USE AD-Ai45 49

THE COONENT PART IS PROVIDED HERE TO ALLOW USERS ACCESS TO INDIVIDUALLY
AUTHORED SECTIONS OF PROCEEDINGS, ANNALS, SYMPOSIA, ETC. HOWEVER, THE
COMPONENT SHOULD BE CONSIDERED WITHIN THE CONTEXT OF THE OVERALL COMPILATION
REPORT AND NOT AS A STAND-ALONE TECHNICAL REPORT.

THE FOLLOWING CONENT PART NUmBERS COMPRISE THE COMPILATION REPORT:

AD#: TITLE:
AD-P003 913 The Need for Improvements in Weapon System Maintenance:

What Can AI (Artificial Intelligence) Contribute?
AD-P003 914 Artificial Intelligence Applications to Maintenance.
AD-P093 915 On Applying Al Artificial Intelligence) to Maintenance

and Troubleshooting.
AD-P003 916 An Overview of the Joint Logistics Coazanders Automatic

Test Equipment Panel.
AD-P003 917 Overview of Training and Aiding.
AD-P003 918 Al (Artificial Intelligence) Approaches to Troubleshooting. I
AD-P003 919 Diagnosis Based on Description of Structure and Function.
AD-P003 920 Diagnosis via Causal Reasoning: Paths of Interactiqp and the

Locality Principle.
AD-P003 921 A Representation for the Functioning of Devices That Supports

Compilation of Expert Problem Solving Structures: An Extended
Summary.

AD-P003 922 Application cl the CSRL Language to the Design of Expert
Diagnosis Systems: The Auto-Mech Experience.

AD-P003 923 An Expert System for Representing Procedural Knowledge. -

AD-P003 924 Failure Detection Processes by Pattern Recognition and
Expert Systems.

AD-P003 925 GUIDON.
AD-P003 926 Designing an Expert System for Training Automotive Electrical

Troubleshooting.
,,D-POO3 9.7 Models of Natural Intelligence in Fault Diagnosis Tasks:

Implications fior TrainiAg and Aiding of Maintenancs Personnel.
A'-FOO) 928 A Generalized Model of Fault-Isolation Performance.
AD-P003 9.9 The Psychology of Technical Devices and Technical Discourse.
AD-P003 930 Artificial Intelligrnce Approaches to Monitoring SystEm Integrity.
AD-P003 931 AFHRL (Air Force Hum'n Resources Laboratory) Progr;m -or

Artilicial Intlligence Applications to Maintenance .nd Training.
AD-PO0" D[;epL Le,.'[1roblems in the Testing of Printed Circuit Boards.
Ad-POO3 933 Expt:rt Sy'cems in Maintenance Diagnostics for Self-Repair of

*igital Flight Control Systems. _-

COMPOENT PART NOTICE (coN'T)

AD#: TIUh:
AD-P003 934 Artificial Intelligence Contributions to Training and

Maintenance.
AD-P003 935 NAVAIR's (Naval Air Systems Command) AI (&rtificial

Intelligence) Program for ATE.
AD-P003 936 Artificial Intelligence Applications to Automatic Test Equipment.
AD-P003 937 Model-Based Probabilistic Reasoning for Electronics

Troubleshooting.
AD-P003 938 Implications of Artificial Intelligence for a User Defined

Technical Information System.
AD-P003 939 Applications of Artificial Intelligence to Equipment

Maintenance.
AD-P003 940 Knowledge Based Tools for Electronic Equipment Maintenance.
AD-P003 941 DELTA: An Expert System for Diesel Electric Locomotive Repair.
AD-P003 942 An Effective Graphics User Interface for Rules and Inference

- Mechanisms.
AD-P003 943 The ACE (Automated Cable Expert) Experiment: Initial Evaluation

of an Expert System for Preventive Maintenance.
AD-P003 944 LES (Lockheed Expert System): A Model-Based Expert System for

Electronic Maintenance.
AD-P003 945 The Application of Artificial Intelligence to a Maintenance

and Diagnostic Information System.
AD-P003 946 Intelligence Information Retrieval from on-Line Technical

Documentation.
AD-P003 947 On the Requirements of Expert Systens for Fault Isolation.

Aceesbs-f For

NTIS G' .ki"

""* iC ; .',. ,j SCILt 2 .l~ ..
4- " t .

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
t. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

Unclassified

20. SECURITY CLASSIFICATION AUTHORITY I. DISTRIBUTIONIAVAILABILITY OF REPORT

2b. DECLASSIFICATIONOOWNGRADING SCHEDULE Approved for public release; distribution unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFHRL-TR-84-25

f. NAME OF PERFORMING ORGANIZATION 6ib. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION I
Denver Research Institute (Ifapp&able) Training Systems Division
University of Denver Air Force Human Resources Laboratory

6c. ADDRESS (Ciy, State and ZIP Code) 7b. ADDRESS (Ciy, State and ZIP Code)

Denver, Colorado 80208 Lowry Air Force Base, Colorado 80230
S. NAME OF FUNDING/SPONSORING Sb. OFFICE SYMBOL S. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)

Air Force Human Resources Laboratory HQ AFHRL F33615-82-C-0013

Sc. ADDRESS lCily,. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

Brooks Air Force Base, Texas 78235 PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.

62205F 1121 09 15

1. TITLE (I-cde secu-iy C¢auif ati--) Artificial Intelligence in Maintenance: Proceedings of the Joint Services Workshop P

12. PERSONAL AUTHORIS)

13. TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Yr., Mo., Day) 15. PAGE COUNT

Interim FROM Sep 82 To Sep 83 June 1984 523
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on remrse i necessary and identify by block number.

FIELD GROUP SUB. GR. artificial intelligence expert systems job performance aids
automatic test equipment fault diagnosis maintenance
built-in-test integrated diagnostics military research j

19. ABSTRACT Continue on reverse if necessary and identify by block nurnber)

This report presents the proceedings of a workshop on artificial intelligence (AI) in maintenance that was sponsored by 7
Department of Defense agencies. The workshop, entitled Joint Services Workshop on Artificial Intelligence in Maintenance, was
held October 4-6, 1983 in Boulder, Colorado. The primary objective of the workshop was to provide an exchange of technicalinformation among personnel involved in ongoing research and development in artificial intelligence applicable to automatic testing,

maintenance aiding, and maintenance training. A second objective was to identify both theoretical and practical applications issues
in the use of Al in maintenance. This report is organized into four sections: Overview; The Science; Department of Defense Programs
and Projects; and Commercial and Industrial Development Projects. The material in the report includes contributed papers,
significant papers previously published, and edited transcripts of presentations made at the workshop.

20 DISTRIBUTIONAVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED [] SAME AS RFT. E DTIC USERS fl
22# NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c. OFFICE SYMBOL

Nan'y A. Perrigo
Chief.STINFO Office (5121 536-3877 AFHRI./T$R

DO FORM 1473, 83 APR EDITION OF I JAN 73 IS OBSOLETE Unclassified -

SECURITY CLASSIFICATION OF THIS PAGE

Item 18 (Continued)

proceedings training troubleshooting workshop

Unclassified
SECJtTY CLASSIMIATION OF THIS PAGE

7-

ARTIFICIAL INTELLIGENCE IN MAINTENANCE:

PROCEEDINGS OF THE JOINT SERVICES WORKSHOP

October 4-6,1983
Boulder, Colorado

Sponsored

by

Air Force Human Resouwires LaboratoryL

Army Research Institute for the Behavioral and Social Sciences

Naval Training Equipment Center

Navy Center for Applied Research in Artificial Intelligence

Navy Personnel Research and Development Center

Rome Air Development Center

U. S. Army Project Manager for Training Device.

Accession For

NTIS CMA&I
DTIC TAB

UE

Prepared
by By-

Denver Research Institute A:
Social Systems Research and Evaluation Division ' a'

University of Denver Dist jca.L
Denver, Colorado 80208

(303)871-3381/J

PREFACE

The Joint Services Workshop on Artificial Intelligence in Maintenance p
was held October 4-6, 1983 in Boulder, Colorado, sponsored by seven Department
of Defense research agencies. The specific objectives of the workshop were:

To provide an exchange of technical information among
personnel involved in ongoing R&D in artificial intelligence
applicable to automatic testing, maintenance aiding, and
maintenance training.

9 To identify both theoretical and practical R&D and
applications issues in the use of Al in maintenance.

This technical report, Artificial Intelligence in Maintenance: Proceedings
of the Joint Services Workshop, includes the papers presented and is organized
into four major sections. Rather than organizing the papers chronologically, we
elected to gather them topically to reflect the contributions of the scientific
community, the Department of Defense community, and the industrial
community. Therefore, a section that presents an Overview of Al technology is
followed by The Science, DoD Programs and Projects, and Commercial and
Industrial Development Projects.

This report includes the workshop papers and presentations, some of
which are transcripts that have been edited, significant papers previously
published, and contributions from workshop participants who were precluded from
presenting in Boulder because of time constraints. We are grateful to the
presenters and authors for their cooperation in gathering materials for the
proceedings.

This workshop could not have been conducted were it not for the
leadership and support of the Air Force Human Resources Laboratory, in
particular, Dr. Earl Alluisi, Chief Scientist; Mr. Brian Dallman and Major Hugh
Burns of the Training Systems Division; and Mr. Russell Genet of the Logistics and
Human Factors Division. We wish to acknowledge the support of Dr. Ken DeJong
of the Navy Center for Applied Research in Artificial Intelligence for his
assistance in developing the workshop program. Many others deserve credit for
their help in making this workshop a success, especially Ms. Bonita Moul,
Administative Editor of this report, without whose tireless effort there would be
no permanent record of these proceedings.

J. Jeffrey Richardson
Program Organizer
Denver Research Institute

..

ORGANIZATION OF THE WORKSHOP

Program Organizer: 3. Jeffrey Richardson
Denver Research Institute

Air Force Program
Monitor: Brian Dallman

Air Force Human Resources Laboratory
Lowry Air Force Base, Colorado

Workshop Moderator: Major Hugh L. Burns
Air Force Human Resources Laboratory

Lowry Air Force Base, Colorado

L +.

Administrative Editor: Bonita L. Moul
Denver Research Institute

Boulder Host: Institute of Cognitive Science
University of Colorado

ti i

INTRODUCTORY REMARKS

I recently saw a bumper sticker which had been given out by the P
American Association for Artificial Intelligence. It read, "Artificial intelligence:
It's for real." It is this emerging reality of artificial intelligence, and in
particular, its practical applications to maintenance, that brings us together in
Boulder this morning.

Al research in problem solving and expert systems provides us with new S
tools and techniques to be refined for practical applications. Some major
corporations have working systems that use sophisticated troubleshooting of
electronic systems in order to identify where maintenance repairs are required.
Universities continue to define and to clarify many of the basic research issues in
this emerging technology. Some investigators have even produced generic
systems that can be adapted for specific domains. I believe the time is right for I.
programs of exploratory development, technology demonstrations, and to some
extent, prototyping and technology transition. Indeed, each of the services is in
the process of formulating plans for the application of this evolving technology.

Consequently, one goal of this meeting is to stimulate joint services'
activities, for example, in sharing information about specific Al applications to S
automatic test equipment, maintenance aiding, and maintenance training. In that
regard, the joint sponsors of this workshop have arranged to hear from
participants from academic institutions, industry, and the services.

We at AFHRL would like to thank our co-sponsors for supporting this
workshop: Army Research Institute (ARI), Naval Training Equipment Center
(NTEC), Navy Center for Applied Research in Artificial Intelligence (NCARAI),
Navy Personnel Research and Development Center (NPRDC), Rome Air
Development Center (RADC), and the U.S. Army Project Manager for Training
Devices (PMTRADE).

We would also like to acknowledge the representatives of the Denver I -

Research Institute (DRI) for their efforts in organizing the workshop and thank
them in advance for the preparation of the workshop proceedings. We are
grateful to the personnel of the University of Colorado's Institute of Cognitive
Science who have helped with many of the local arrangements. Finally, I wish to
thank Dr. Jeff Richardson from DRI, Dr. Ken DeJong from NCARAI, and our own
people from the Lowry division, Mr. Brian Dallman and Major Hugh Burns. Thanks
from all of us for your hard work toward what promises to be an excellent
meeting.

In the next few days, we'll be hearing overviews about the state of the
science of artificial intelligence, specific efforts in expert systems and knowledge
engineering, the psychologies of technical devices and fault diagnosis, and the
future of AL. The program, it appears to me, is quite comprehensive.

In addition to the presentations, the workshop has been planned to allow
for, and hopefully even to stimulate, a maximum of personal interchange among
those attending. We view this as a time to explore with others (both formally and

v I

informally) our thoughts and aspirations on the future directions of AI research,
development, and applications. So that's the background of the workshop, its
program, and our hope for cooperative sharing now and in the future.

Thank you.

Dr. Earl Alluisi
Chief Scientist
Air Force Human Resources Laboratory

F

.I

Vi-

vi~

TABLE OF CONTENTS

OVERVIEW

Keynote Address
Bernard Kulp..I

The Need for Improvements in Weapon System Maintenance:
What Can Al Contribute?

Michael McGrath ... 15

Artificial Intelligence Applications to Maintenance
Anthony Coppola .. 23

On Applying Al to Maintenance and Troubleshooting
Ken DeJong ... 45

An Overview of the Joint Logistics Commanders Automatic Test
Equipment Panel

Paul Gross ... 55

Overview of Training and Aiding .
Henry Halff ... 67

THE SCIENCE

AI Approaches to Troubleshooting
Johan de Kleer ... 83

Diagnosis Based on Description of Structure and Function
Randall Davis, Howard Shrobe, Walter Hamscher,
Karen Wieckert, Mark Shirley, and Steve Polit 97 L

Diagnosis Via Causal Reasoning: Paths of Interaction
and the Locality Principle

Randall Davis .. 109

A Representation for the Functioning of Devices that Supports
Compilation of Expert Problem Solving Structures

V. S. Moorthy and B. Chandrasekaran 117

Application of the CSRL Language to the Design of Expert
Diagnosis Systems: The Auto- Mech Experience

Michael C. Tanner and Tom Bylander 131 L

vii

iL

* An Expert System for Representing Procedural Knowledge
Michael Georgef f ... 153

* Failure Detection Processes by Pattern Recognition and Expert
Systems

L. F. Pau ... 171

GUIDON
WilliamJ. Clancey .. 181

Designing an Expert System for Training Automotive Electrical
Troubleshooting

Wallace Feurzeig, John F rederiksen,
Barbara White, and Paul H-orwitz 189

Models of Natural Intelligence in Fault Diagnosis Tasks:
* Implications for Training and Aiding of Maintenance Personnel

Williae B. Rouse ... 193

* A Generalized Model of Fault-Isolation Performance
Douglas M. Towne ... 215

The Psychology of Technical Devices and Technical Discourse
David E. Kieras ... 227

Artificial Intelligence Approaches to Monitoring System Integrity
Roy Maxion.. 257

* DOD PROGRAMS AND PROJECTS

AFHRL Program for Artificial Intelligence Applications to
Maintenance and Aiding

Brian Dallman ... 275

Depot Level Problems in the Testing of Printed Circuit Boards
Rob Milne .. 287

Expert Systems in Maintenance Diagnostics for Self-Repair of
Digital Flight Control Systems

John Davison ... 293

Artificial Intelligence Contributions to Training and Maintenance
Joseph Psotkau.. 305

* NAVAIR's Al Program for ATE
Randall Shumaker ... 317

Artificial Intelligence Applications to Automatic Test Equipment
Jerry L. Kunert .. 331

viii

• I e ee •)a ,)ee •e ee ee ee •• •• •'1o •

Model-Based Probabilistic Reasoning for Electronics
Troubleshooting

Richard R. Cantone ... 341

Implications of Artificial Intelligence for a User Defined
Technical Information System

Robert 3. Smillie ... 353

Project STEAMER
James D. Hollan .. 361

COMMERCIAL AND INDUSTRIAL DEVELOPMENT PROJECTS

Application of Artificial Intelligence to Equipment Maintenance
John H. Hinchman and Michael C. Morgan 363

Knowledge Based Tools for Electronic Equipment Maintenance
Thomas L. Williams ... 381

DELTA: An Expert System for Diesel Electric Locomotive Repair -
Piero P. Bonissone .. 397

An Effective Graphics User Interface for Rules and Inference
Mechanisms

J. W. Lewis ... 415

The ACE Experiment: Initial Evaluation of an Expert System
for Preventive Maintenance

Frederick D. Miller, David H. Copp,
Gregg T. Vesonder, and John E. Zielinski 421

LES: A Model-Based Expert System for Electronic Maintenance
T. 3. Laffey, W. A. Perkins, and 0. Firschein 429

The Application of Artificial Intelligence to a Maintenance
and Diagnostic Information System

David R. Antonelli .. 451

Intelligent Information Retrieval from On-Line Technical
Documentation

Arthur F. Griffin ... 481

On the Requirements of Expert Systems for Fault Isolation

Jeffrey Van Baalen ... 493

A.THORINDEX 505

LIST OF PARTICIPANTS ... 507

ix
L

-| ".- .. -,

Keynote Address

Dr. Bernard Kuip
Air Force Systems Command

It is a pleasure to have this opportunity to come and discuss with you
some of my thoughts on artificial intelligence in general and artificial intelligence
as applied to maintenance and training in particular. If you'll pardon me, I don't
like to read a speech, but I'm going to try to read a lot of this because--while I'm
very flattered at the program committee's setting aside 45 minutes for my talk--I
assure you I don't know that much about Al, especially in maintenance and
training. But I'll shoot the bull a little bit with you, and I certainly have some
firm ideas of what I want out of Al, and what I want out of AI in maintenance and .
training.

You have the advantage of being the first of a series of Al workshops or
meetings within the DoD, and particularly in the community of "people" research.
Coming up soon is a conference by our Aerospace Medical Division, sort of an in-
house, in-Air Force kind of thing to get their thoughts organized in AL They were
involved in the very early days of AI--it's kind of interesting to look back in
history, and I'm going to talk a little bit about history. Many of you probably
know it a lot better than I do and have participated in it, but reviewing it has been
interesting for me.

Back in the days when we were thinking about how to make machines
that think, we liked to duplicate the human thought process, and so there's a lot of
work on how humans think and how to model that in a computer and how to build
software on that. Our Aerospace Medical Research Laboratory at Wright-
Patterson had quite a bit of work in that in 1965, which is a date that is kind of
famous in Al. They were told to get out of the business, and now they're
struggling to get back into it. L

Commander Paul Chatelier of DoD is planning an Al conference in spring
1984 on personnel and training which promises to be an interesting kind of a thing.
There is clearly a major interest in Al in the DoD research and development
community, not only in the personnel and people-oriented communities, but in the
other areas of research within DoD. I'd like to tell you a little about the origin of
that and how it came about.

We also ought to look back at the history of Al, how we got where we are
and what are our accomplishments. I have said in the topic of my discussion that
the time for artificial intelligence has come. I think we'd better make sure that
that's true, because it's been said before. I'll tell you a little bit about the origin
of Al and why it hasn't developed before. In the early days of my interest in Al, I
would go into the general officers' meetings and say "We really ought to open up a
research program in AI," and that's about all I'd get to say. Then I was asked to
leave the room--"rhank you, we don't have time for such nonsense at these very
high powered meetings." It took awhile before I was invited to say what I had to

I.. _ .

F

say in 5 minutes, and then 10 minutes, and then an hour. I'm sure there are other
people at this workshop who have had a similar experience. So, we want to
examine that at this time Al is here for real. 6

People really began thinking about intelligent machines back in 1937,
back when the old computers were made with vacuum tubes. I'm sure there are a
lot of people in this room who remember those. Ten thousand of them in a
computer with a thousand-hour mean time to failure meant you worked fast when
you had that thing up, because it was going to go down fast.

Even in those days, the late 1930s and early 1940s, we began to see
novels and stories about intelligent machines that would rule human beings. I
recall a very interesting episode of Star Trek that pointed out one of the problems
we're going to have as we go into AL. These people presented a computer with a
situation that they knew the computer had not seen before--a totally illogical
situation to a human being. The computer didn't know what to do with it and

* - crashed. Of course, that meant that people had won the battle.

Now, we're talking about presenting computers, computer programs, and
computer systems to people on the flight line, in the trenches, and on the ships.
It's not clear that these people are totally logical in their approach to the job that
the computer wants to help them do. We in the high technology area often look at
the world a little bit differently than those poor recruits down there. They come
out of high school, go into the army, get 6 weeks training in electronic repair, and
have to go out there and repair very sophisticated radar equipment.

The first major work about machines that think was published by Norbert
Wiener of MIT in 1940, entitled Cybernetics: Machines that Think. If you haven't
read that book, you ought to read it; it's a fascinating book. He coined the word
cybernetics from a Greek word meaning helmsman. I don't really know why he
picked that word. I've never been able to figure it out, and the two or three books
that I've read on the subject didn't know either. But he defined it as the
mathematics of information processing and its technical realization. It was a
very popular word for a long time. It was replaced by the term artificial
intelligence somewhat later, as we began to get a little bit more feeling that
indeedwe could get these machines to do at least some of the things that
intelligent beings do.

In the early days, those included in Al recognized that there were two
processes that human beings master which represent our thought processes and ..
intelligence: natural language understanding and image understanding. An almost
immediate application was machine translation. They dreamt of a machine into
which you would put a printed page of English, turn a dial to German, French,
Russian, or what have you, and out would come the document, all translated at a
million words a minute or some similarly unreasonable number.

In fact, in 1952, there was a Frenchman who, referring to these machine
translators, said that if a human being can do it, a suitably programmed computer
can also do it. That was in 1952, and it's interesting to look at what machine
translation capability is today. I talked to our people at Rome Air Development

2

Center (RADC) who are the Air Force experts in this field. They said, in
scientific literature, where there are fairly well-structured expressions and words,
we get between 60-85 percent fidelity in translation--depending on the particular
system you have and the particular difficulty of the passage that is being
translated. But when you go to newspapers and attempt to get the thought
process, we're lucky to get 50 percent fidelity in translation of the ideas of the
reporter into the translated document. Finally, if we go to poems, novels, and
fiction, where idiosyncracies of the language become most evident, we're down to
30-40 percent fidelity. Thus, we have not accomplished the kind of challenge that
the early Al researchers thought would reflect the development of a machine
which has artificial intelligence.

I'd like to comment on one other thing before I go on. The United States
is not alone in the field of Al, and I think all of you realize that. For example,
toys and games were not neglected by the early researchers, and games of
checkers and chess were a favorite pastime of the research community. In fact,
this led some people, particularly critics, to say that artificial intelligence may be
only useful in the design of the toys of the future. There was a chess match in
Russia in 1966 or 1967 between the Russians and the United States. The United
States took over a very fine program--a single, fairly sophisticated program
designed to play chess with another computer. They were pretty proud of it. The
Russians, on the other hand, came in with two programs. One was a rather simple
program with which they started out the match. Then they switched to a much
more sophisticated program that they had developed. In fact, the approach the
Russians had was to use the simplistic one to get some things out of the way, get
some of the excess pieces off the board, if you will, to where they could really
work, then use the more sophisticated program. This approach proved to be
decisive in the match and the Russians won.

In the newspaper within the last 6 months, there was a report of some
very sophisticated computer equipment that was confiscated because it was being
shipped to Russia. That was on the front page. About 2 weeks later, on the back
page of the newspaper it was reported that this was a computerized chess
machine that was going over to Russia to replay the earlier match. I have not L
seen any releases, at least in the Washington Post, about whether or not they did
get that equipment cleared and went over there and played.

So, the U.S. is not alone in this. The Russians, French, Germans, and
English are very old in this field of artificial intelligence. Certainly we must
respect their position in the world, particularly if we're going to assess it in
relationship to the economic value or the war fighting capabilities that it might
give them. In particular the Japanese have embarked on a very large computer
program--a fifth generation computer based on artificial intelligence. They make
it clear that this is not a number cruncher. It is clearly an artificial intelligence
implementing machine. DARPA has a next generation computer program that is
also very interesting. When I first heard of the program, it was a 200 million L
dollar program over 5 years. It is now passing 750 million dollars in 8 years and
going up rapidly. It will be an artificial intelligence based machine.

Well, I've talked about some of the problems of the early researchers,
but there were also some successes in the 1950s and early 1960s. The community

3

learned from these that the most successful programs were in fact those that
were based on very large data bases and played in a machine that could organize,
store, and manipulate data at a reasonable speed. They also recognized that it
was a very labor-intensive project to get to this state of usefulness. Among the
machines that were considered best were those which did not attempt to duplicate
human thought processes. In fact, they were based upon information processing
(indeed list processing) and did not necessarily try to emulate or duplicate human
thought processing.

This is sort of a shock to the purists in AI, I think, because they believe S
that when you talk about artificial intelligence, it ought to be an artificial person.
There is no question that the objective of the earlier phase of artificial
intelligence research has not yet been accomplished. Even in expert systems,
which are here today and very successful, there still seems to be, in the judgment
of most researchers, some exciting research to be done--enough research for a
sizeable effort in the university kind of environment for at least the next 10 "
years. This work would have to be done before we'll be ready to say that expert
systems are mature and we have a technology, rather than a science, that's ready
for routine applications.

In recent years, we've seen the recognition on the part of the research
community that these so-called expert systems are indeed real and practical. lop.
We've seen researchers break off from their university associations and develop
small companies. There is an industry called knowledge engineering, that's what I
call it at least, that's developing rapidly. We're seeing the industrial applications
being developed and used. We're very proud of that, and we in the DoD are
beginning to take steps to transform that science into a technology of use to the
military and get it finished and applied to many diverse problems.

For those of you who want a good review of the present state-of-the-art
of Al, I could name a whole list of these programs that have been developed and
are rather successful, but if you're like me, you won't remember them after the
workshop is over. However, in Al Magazine (Fall 1983), there is an excellent
review of the general state-of-the-art of expert systems and of Al in general--a .
result of the annual artificial intelligence conference which was held in
Washington.

Now I'm going to move into a part of my talk that says, how did I get
here, why am I here today, and what my thoughts are on the subject. Just like
telling a war story, and indeed, I find that all of a sudden war stories seem to be 0
fun to tell. I was first exposed to artificial intelligence in a study called
Computer Technology 2000 in 1978. 1 had read Wiener's book back in the 1940s,
but I had long since forgotten it. This particular study was part of a larger study . :-
called Look Forward 20 Years. It was performed for the Director of Laboratories
at Air Force Systems Command (AFSC) and took a look at the technologies that -- -

the Air Force laboratories ought to be working on in the 15 to 20 year time
period, that is in 1988 to 1990. The computer section of the study was run under
Walt Beam and had a group in it made up of some proninent figures in artificial
intelligence. That study predicted that A[techniques applied to inference,
planning, and pattern recognition would enhance the generation of plans, and

4

' ".' ' . ° "

*. p

!
present and evaluate alternates to those plans in the general exploitation of
reconnaissance and intelligence information in the late 1980s.

As a result of that prediction, and a number of other recommendations in
the context of the 2000 study, the Director of Laboratories of AFSC put two
million dollars into Rome Air Development Center (which had been given the
charter for basic computer science development in the Air Force). Rome was to
develop a program which would implement these recommendations, and one of the
recommendations they chose to implement was indeed artificial intelligence. We
also asked the Air Force Office of Scientific Research (AFOSR) to begin to take a P
look at this field and they responded with a program which has expanded
continually over the years in the basic science of artificial intelligence.

The AFOSR program complemented quite an aggressive program by
Defense Advanced Research Projects Agency (DARPA) and by the Office of Naval
Research in this area. In about 1981, the Defense Science Board (DSB) held a P
summer study on technology and its implication for the military art. It was
headed by George Heilmeier. He's a Vice President of Texas Instruments, spent a
tour at USDR&E as the Deputy Undersecretary for Research and Advance
Technology. Before that he'd been at DARPA for some time and was there when
they got involved in the Al business.

The DSB study dedicated a whole day to artificial intelligence. A series
of speakers from various organizations discussed the state-of-the-art of Al and
its potential. It was during that particular series of discussions that I became
convinced that Al was indeed ready for the conversion into a technology that
would be useful to the military. We began to pick that up within the three
services and talk about it, decide how to get into the area, and how to encourage
our people to investigate Al, but there are some very severe constraints. I'll talk
about a couple of them and how the Air Force is accommodating them in a few
moments.

As a result of the DSB summer study which identified 17 major
technologies which would contribute an order-of-magnitude increase in military
capability in the 1990s, the Joint Directors of Laboratories established seven
technical initiative panels in 1982. The objective of these panels was to take a
look at the state of research in these technical areas within the services and to
propose joint programs that would be of a fundamental nature applicable to all
three services. This would give us a higher probability of creating a center of
mass that was big enough to expand and absorb the technologies that we are
involved with and also to accumulate some more money in each particular area.

The Al panel proposed three joint service programs, one of them to be
executed in-house at the Navy Center for Applied Research in Artificial
Intelligence (NCARAI) in maintenance, diagnostics, and training. It is initially a
six-person effort, with two people from each of the services co-located at the
Center.

The second program, also to be executed in-house at the Navy Center, is
electronic warfare information fusion and resource management. Vie think that
each service contributing two people to a program like this will result in a team
which will, together with some contract help as needed, create a center of mass

5

where the state-of-the-art can be advanced, particularly with reference to the
military. This is the core in-house capability which many of us in the government
think is absolutely necessary if we are going to understand and to rapidly advance
the state-of-the-art in any area. We recognize that our general personnel

- policies are such that we cannot do all our work in-house (and in fact that we
should not) because we depend on industry to build the systems and we depend on

, the universities to do the basic research. But we do have to know enough to be
smart buyers. We have to know enough to evaluate the potential of a technology
and the time in which we might exploit it. Thus, we think that in-house capability
is very important and it's being established at the Navy.

This Navy Center will have approximately 25 principal researchers.
They are very well equipped and in this tri-service program, the Army and the Air
Force will contribute to the equipment. I think they have established an excellent
atmosphere for productivity. In Figure 1, you'll see the three major areas on
which they'll focus.

One of the other recommendations of the Al panel was that there be a
DoD Information Center for Al and that will be housed at the Naval Research
Laboratory and at the Navy Center. It will provide library services for ongoing
programs in Al in all three service laboratories and a general background library
of Al literature. We hope to get it in a position that it will also have the plans of
the three services. We look forward to this as being a major initiative and a way
to get a running start on understanding and transitioning artificial intelligence
science into a technology of use to us in the services.

The third program that was proposed in this joint service arena was in
software productivity. The DoD has a major problem in software. That is, it's
very expensive to develop and we don't know how to judge the expense of it, a
priori, before we start a program. As a result, generally speaking, our software
programs overrun and you can figure an average overrun of 2 or 3 years. At any
rate, the committee recommended that the software program be executed at
Rome because they already had a good start. The Army and the Navy will
probably not be asked to contribute any money to it.

Figure 2 shows Rome's view of their Al program and it is going strong.
My first trip up there to see what they were doing was, in my estimation, a total
disaster. However, my most recent trip up there was very gratifying. They'll
have an in-house laboratory. I think it's clearly essential that the Air Force have
a couple of these--not one in every laboratory, we can't afford that--but a place
where people can go and work with the machines and live with people applying Al
techniques and, in fact, developing them if we're able to develop that kind of
capability.

In developing this Al capability, we recognize the staff problem that
exists, both in our services and in industry. And so RADC has developed a
relationship with a number of universities in the area, including the Air Force
Institute of Technology. We expect these universities to (1) do research for us, (2)
supply consultants who are knowledgeable of our interests and our business, and,
of course, (3) train people, both for the services and for industry.

6

LUw

COA

CCD

GI LU
~C Col ~

Q=G

>< L= (. C/c CI
C,) C)i -

LU C

o~. LU

LU I-

.4c ip. .

z -K

z e93
~~LU

W8a d

z Z0

.I

Some of the basic things RADC is working on are the tools for use by
people developing a system based on AI techniques. At the level of exploratory
development, we move into an actual systems development or demonstration. The -
three major systems areas that RADC is working on are the knowledge-based P
software assistant (which is that software productivity program),
knowledge-based mission planning (in which one takes a look at various
information coming into a central decision making authority from various
sources), and the intelligent analyst system. In the intelligent analyst system, we
get reams and reams of photographs, miles and miles of recordings of voice
intercepts, and we need some help to separate the things we should look at more I
carefully. In the second area, knowledge-based mission planning, RADC takes a
look at the input coming into the central decision making authority. For example,
input from reconnaissance resources--space, airplanes, radars, and intercept
information. All of this information is organized and pre-digested and then
presented to a decision maker who says, "I have certain resources at my disposal
(electronic jammers, bombers, fighters, aircraft, other communication systems,
etc.) and here is why I want to use these resources to advance my goals in this
particular arena." So it's sort of a commander's assistant, if you will, which will
organize the input data, communicating and analyzing the kinds of alternatives to
use with various equipment. Right now we do that numerically. We consider
when we wish to send a bomber against a target and say, "Hey, here's the bombers
we've got, here's the weapons, and now you can take the weapons or calculate
your trajectories or calculate the attrition of the aircraft, etc." All of this is
presently in beautiful long programs that take a month or more to run. We expect
Al techniques to perform the analyses in near real time.

Finally, we would like to establish a second center of R&D in artificialI intelligence and its techniques at Air Force Avionics Laboratory at P
Wright-Patterson (see Figure 3). They're about 3 or 4 years behind Rome in their
implementation, but they're eager and they're looking forward to a rapid kind of
build-up. You can see the four areas that they're interested in, and again, -
underlying this is an in-house laboratory for artificial intelligence. I strongly
suspect that we'll use data links to Rome so we can take advantage of both of the
computer systems. Again, we see the need for close ties with a university in I.-.
order to get the kind of expertise and people that we think are necessary to help
us organize our thoughts and pursue this very high technology program.

Other laboratories are also involved, for example, Flight Dynamics
Laboratory. Flight Dynamics Laboratory has been looking at integrated systems
for the last several years. They are responsible for flight control systems.
They've integrated the fire and flight control of an airplane so that the two very
diverse functions of avionics and flight control begin to talk to each other. They
find that when you do that, it is quite interesting the kinds of capabilities you can
develop in a modern airplane. Flight Dynamics Laboratory says that what they'd
really like to develop is a flight control system that controls the trajectory of the
aircraft. That, in fact, is what the pilots do when they design their intercept, for
they control the trajectory to put them in a position of maximum advantage.
That maximum advantage may be one in which they have the shortest time to
intercept, or it may be the intercept that gives them the highest energy remaining
in their aircraft at time of intercept, or in other cases, it may give them the
minimum fuel consumption so they'll have enough fuel to stay in fight longer.

9

CD

m -a .-. j dm

L, ~ ~ UJJ G

I-. F = . .

zip 2c 'cj -=

C0

cc C* c

d~c~ C.3

LCD i

C-3 c -
2c0

-a-

ca W

CL.U

-J :- =K s.i

0u

2c2

So, Flight Dynamics Laboratory believes that artificial intelligence
techniques can greatly aid in the solution of that problem. But they've got
another problem. If a radar goes out, you can't see very well, but you're still in
the air. If a radio goes out, you can't talk to anybody, but you're still in the air. 0
If your flight control system goes out, you fall out of the sky. So reliability is the
problem--electronic reliability in the sense of flight control is probably about
three orders of magnitude more rigid than that demanded of a high reliability
avionics system.

We expect Avionics Laboratory to look at equipment reliability, too. But 0
the differences in thresholds of the two suggest that it's useful for the Air Force
to attack both areas. Finally, other laboratories will probably be involved in
pattern recognition, voice understanding, navigation, weapon guidance, and
resource management applications of Al.

Thus far, I've spent most of the time talking about the Air Force, but I
should not neglect the other services. You'll hear a lot about the Navy's work, an
overview from the Center for Applied Research and NPRDC. But others that
should be recognized include the Naval Ocean Systems Center, the Navy Undersea
Systems Center, Surface Weapons Center, Air Development Center, and Weapons
Center, and NTEC. The Army Research Institute is here and presenting. There is -'

a major effort in the Army, in-house at the Engineering Topographic Laboratory U
at Fort Belvoir, in autonomous navigation. The kinds of unique understanding that
are available today using artificial intelligence techniques seem to be quite
adequate to start as the basis for autonomous navigation. Army Human
Engineering Laboratory at Aberdeen is going into this field heavily. And I would
say that an excellent overview of the state-of-the-art in Al in the military is
going to be presented at the AIAA Conference in Computers in Aerospace in P
Hartford, Connecticut the 24th through the 26th of October.

There's one final thing I want to talk about--the Joint Directors of
Laboratories (JDL). DARPA has been involved in artificial intelligence research
and development for a long time. In order to adequately exploit the research, and
indeed the researchers, that DARPA has spent many millions of dollars on, we .
requested that DARPA support efforts in the service laboratory with their
researchers and their technologies. In this way, technology transfer to the
services can be accelerated rather than relying on the usual process of osmosis
that is more common between DARPA and the service laboratories. I'll be talking
to Commander Ron Olander, the Al person at DARPA, to discuss some of the
things he thinks are ready for application in the services. In fact, the three
services will all be represented and we'll be back to our laboratories sometime
within the next 2 or 3 weeks requesting them to take a look at DARPA programs
and see which ones they would like to pick up. We hope to get an introduction to
the DARPA researchers, who are among the outstanding researchers in the world
in this area, and get them interested in looking at our problems and helping us
transition their results into application in the services.

In summary, I'll have to say that my general attitude and enthusiasm for
Al is evidence that I believe it's here. I'm particularly pleased with the

• - ..

11_

m

p

maintenance community and their interest and aggressiveness in this area.
*There's no question in my mind that our systems will continue to become more

complicated and more sophisticated. They will become more reliable but not that
much faster. Labor will be more expensive and harder to come by. Our potential
enemies will continue to become more sophisticated and more capable. Our
equipment must be ready to fight and be able to sustain the fight without warning.
Maintenance capability will be the key to our success and indeed our deterrence
for a long time to come. I believe there are two principal aspects of A[which
are going to be the cornerstone of the applications to maintenance. Those are
expert systems and natural language understanding. The role of image
understanding is not so clear in my mind yet. But one thing is very clear--the
systems which ultimately are made from the technologies that are going to be
developed in the laboratories presenting at this workshop must be very user
friendly. A user that will be subjected to very inclement weather, dressed in very
unwieldly gear (especially if chemical warfare becomes a reality or a possibility), -

and working at night or whatever. The user's education won't be that of a
graduate engineer or a graduate mathematician. It'll be that of an eighth grader--
hard as we may try to upgrade our educational system so that everybody has a
strong education in mathematics and science at the end of the 12th grade.

I don't think we should kid ourselves that the application of this new
science is going to be easy. It will be labor intensive; it will take some very
sophisticated and very capable personnel to develop the systems that we're talking
about. We need to plan and program our resources carefully.

I am not interested in seeing a step function in the support of Al if it's a
step up and then a step down. I think we need to plan for the continuity of
funding, both in our contractors and in our laboratories in this important and yet P. -

very sophisticated area.

Above all, we've got to be realistic in our expectations. It's going to
take a while before we have a system out there on the flight line. We can't afford

* not to be demanding, and I've told you one of my demands of the system--user "
friendliness. But we've got to be realistic and accumulate knowledge and skills so
that we can produce the kinds of systems that we high technologists (as I proudly
call myself, and I'm sure all of you feel you are also) expect of ourselves and of
our scientific endeavor.

Thank you.

12

"" 12-

S

ABOUT THE AUTHOR

Dr. Bernard A. Kulp is Chief Scientist, Director of Science
and Technology, Air Force Systems Command, Andrews
AFB. As Chief Scientist, he is responsible for evaluating
and securing optimum effectiveness in all phases of
research and development under the cognizance of the
Director. He assists the Director in establishing technical
realism, balance, and time lines of exploratory development
in the areas of propulsion, aerospace mechanics, materials,
and nuclear weapons. Dr. Kulp furnishes broad program
guidance to all echelons of the Director's staff. He holds a
Ph.D. in physics from Ohio State University.

P.

13

MEMNON .

The Need for Improvements in Weapon System Maintenance:
What Can Al Contribute?

.Y) Michael McGrath
-o Office of the Secretary of Defense

* 0. Good morning. When I first heard about this workshop I was enthusiastic
about the opportunity to come out here. Not just because Boulder is a beautifulQ place to be in October, although that did have something to do with it, but

i because I think Al applications in maintenance is an important topic and an
important subject on which to get a dialogue going. And I think the time is right
for that dialogue to start. What I'd like to do is go briefly through why I think it is
important-why I think the time is right. I'd like to cover very briefly the need as
we see it from an Office of the Secretary of Defense (OSD) perspective, both
current maintenance problems and future trends; look at some of the initiatives
DoD-wide that have been instituted to deal with this need; look at some of the
possible contributions of AI; and discuss some of the expectations that have been
built.

The first thing I'd like to comment on is a large DoD and industry study
that was undertaken as a result of a Defense Science Board (DSB) study in 1981.
The DSB study recommended we undertake a comprehensive review of reliability .
and maintainability, looking both at the ingredients of successful programs in a
case study mode and also doing an assessment of emerging technologies. That
study started in 1982 and is winding up now. It had extensive involvement from
all three services and from industry, and they're in the final throes in putting out
a 30 volume report which I think will be a comprehensive reference work for us
for the remainder of the 1980s. I recommend it to all of you. Tony Coppola, the
next speaker, will talk more about that study, in particular the At technology
assessment.

Current Problems

When we talk about current problems in maintenance, the one that jumps
out is diagnostics. I'm talking about built-in test and automated test equipment.
All three services have some form of automated diagnostics on virtually all major
weapon systems. The typical experience is that we see a long tail on the
distribution of repair times. Some repairs take too long, keeping the weapon
systems down, primarily due to troubleshooting problems. High "cannot duplicate" RL

and "retest okay" rates account for over a third of the personnel hours expended
on maintenance. On some systems such "no defect" maintenance actions account
for over halt of the maintenance events.

Diagnostic problems have a measurable effect on support and readiness.
We see it in terms of increased downtime for the systems, and in low availability,
because the automated systems don't do all the troubleshooting. We need highly
skilled troubleshooters out there--an increasingly scarce resource. Because of the
high false indication rate, we've put a lot of material into the repair pipeline

15

.. -

9..

(usually expensive avionics boxes) thereby creating a need for additional spares.
Since there's never enough money for spares, that in turn causes readiness
problems and low system availability.

Finally, because we can't, in all cases, rely on the indication from the
built-in test, we have to bring along another piece of automated test equipment to
confirm the BIT indications. Hence, we have a long logistic tail that follows the
weapon system around.

Future Trends

When we look at future equipment trends, there are some things that I
think are fairly predictable. It's apparent that equipment will continue to become
more sophisticated. At the same time, some of the hardware technologies that
we'll see in the new weapons systems bring with them promises of improved
reliability and maintainability. A good example is VHISIC, very high speed

* integrated circuits. There we see promises of much greater performance
capability because of the increased density of components. The VHSIC
components themselves are advertised to be more reliable; yet they may bring a
whole new set of problems. Testability of these dense electronics systems will be
a problem, as will power supply reliability and built-in diagnostics. Unless we
start to address those problems now, and get them worked into the technology
demonstrations, we'll have a mixed blessing at best when those technologies hit
the field. This is one of the primary messages of the Institute for Defense
Analyses (IDA) study, and one that action will be taken on.

If you look at personnel projections, demographics show clearly that
we're going to have a declining recruiting base. We don't see any upturn in
aptitudes and education levels. We're not going to have graduate engineers out
there doing the maintenance. And finally, if you look at the Service "Year 2000"
operating scenarios, all of them are logistically more demanding. Maybe I can
just illustrate those last two points.

Here's the well known demographic trend (see Figure 1). This chart
shows all workers entering the work force--ages 18 to 24--including both males
and females. You can see there's about a 20 percent decline in the period 1980 to
the mid-1990s. If you look at males, age 17-21, which is a greater portion of the
recruiting base, you can see the same phenomenon. It just shifts a little bit to the
left (happens a little bit earlier).

All three services have done studies of operational requirements in the
late 1990s and in the year 2000. In each of them we see a more capable threat
which is going to lead to more complex systems. We see a scenario that calls for
small, highly mobile units. Such units can't afford to carry a long support tail
around with them. They probably cannot afford to carry a lot of maintenance
experts around with them. They'll operate in a mode that calls for massing these
small units to accumulate fire power and then dispersing them for survivability.
Logistically, dispersed operations are hard to support. You don't have the
economies of scale. A bag of spares doesn't support a whole squadron. Now you

16

Somme"•

0 Z c0

00
U.,

con

0 J
u Cl) c

00
oc

wwCo

w

w 0 O.

U.U

CDcc

z 00(n

o 0 O co ~ co u~ ~ CN17

need smaller bags of spares. You need therefore to have logistics information
systems at the unit level that will give you a better handle than we have today on
where the support resources are, and what the status of maintenance and
equipment is. The scenarios call for intense surge periods--some of them lasting •
more than 72 hours. During the surge period, we'd like the systems to be virtually
maintenance free. Beyond the surge period, there's a higher sustained sortie rate "
than we see with current systems. That leads to a requirement for improved
reliability, maintainability, and availability.

R&D and Acquisition Initiatives

In the face of these needs, there are a number of R&D initiatives that
have been undertaken. Some of you may have heard of the Carlucci acquisition
initiatives--the Defense Acquisition Improvement Program which the new
administration initiated. It consisted of 32 initiatives, six of which were aimed at S
improving support and readiness. Action is complete on some of the original 32,
and the new Deputy Secretary of Defense, Mr. Thayer, has consolidated the
remainder into six high priority initiatives that continue to be pursued; improved
support and readiness is one of those, and continues to get attention at the highest
management levels in DoD.

A couple of years ago there was an in-house study done on independent
research and development (IR&D) programs in industry; the conclusion was that
less than 3 percent of the IR&D monies were being spent on logistics-related
research. So a DoD policy letter went out stating that we wanted to increase the
emphasis on IR&D for logistic research. That's been followed up in IR&D reviews
and starting in 1985 there's a change in the form that industry will use to report
on IR&D projects. This sounds like a bureaucratic triviality but it's one of the
simple things that causes things to happen. There will be a block on the form for
special interest items--the two areas of special interest that industry will be
reporting on are interfaces with university affiliated research and logistics R&D
implications of the project that they're proposing. I expect that new visibility to
lead to increased emphasis by industry on logistics R&D. S

Finally, we have a funded logistic R&D program initiative that started in
fiscal 1984. This continued in the budgeting for fiscal 1985 this year. Initial
objectives were to undertake technology demonstrations in five areas (see Figure
2). Concurrently, all three services are laying out longer range plans. These
objectives are to be demonstrated in the fiscal 1985 through 1989 time frame. We 0
want to move from a "paper" to a "digital" technical information system. I
mentioned the need for logistics information systems at the unit level. The Army .
has an initiative going for automated battlefield material handling--fuel and
ammo. The Navy has taken a lead on an automated parts-on-demand
manufacturing (low volume spares production using robotics and Al). And, finally,
there's an initiative for the next generation of weapon systems to eliminate or at .L
least reduce the need for intermediate maintenance, thereby cutting that logistic
tail.

18

z.

(LLz
CA 0 Z 0 I

z 4 Z 0JZ0 0
0

0
0. D 0 b0

Z 0 Ch zu- 4i

c c c c 0 L

0 CJ)LL V

a.LU <- - 0 f

z z 0,~

0~ 0
CO c C U)1 a. -LU L

zo 4.4
0 z

04 0 .J

*U 0 0

19

z
0z

0 I-

-II 0
0 0

IL0 0

I-

zi Zl -J

Z 0
0 I-0 Uw
F- >- F LU

iU zI- LU 0 z 0 ..z UULL LUoCl) z z
cmCl) LULU i-o LU

LUCl) zLU L
cl) Il

1=- LU LU
U)LU LU u- 0 -

(l) X 0IC

* 0

20

Favorable Climate for Al

So there's a climate that says we're ready to do some things to improve
maintenance. Each of those initial R&D objectives has room for potential AI
applications, but you'll notice that Al is not a separate topic area on the initial
five demonstrations. Figure 3 shows some of the expectations that have been
built for what AI might contribute in dealing with support problems. First and
foremost, we'd like to see some reduction in the diagnostic areas. And so we're
looking for smart built-in test systems and also for use of expert systems to assist
the troubleshooters. We're expecting to see some contribution to both training
technology and technical information presentation that will assist the
maintenance people. And finally, we look for some contribution in the
development of the weapon systems themselves. Software development, as Dr.
Kulp mentioned, is an expensive and difficult process. Development of repetitive
automated testing routines is one software area where we might gain substantially
from Al applications. Similarly in the computer-aided design/computer-aided
manufacturing (CAD/CAM) era of system design, we can look for some Al
contributions in designing testability and fault tolerance into the systems
themselves.

A Final Note of Caution

LI
We have the ingredients: a well recognized need and a favorable climate

for getting something done. But I'd like to end on a final note of caution. In the
early 1970s there were a lot of promises made for built-in test and automated test
equipment, and the benefits were overstated. A number of weapons systems were
fielded with maintenance concepts that revolved around promises that never
materialized. A lot of expensive and traumatic maintenance concept changes had . -

to be made as a result. We don't want to repeat the mistakes of the past. I think
that the benefits of Al can be modestly stated and yet still capture the resources
that are needed to get the Al program well underway. Given that we do that, I
think that the climate is right and now is the time to start.

Thanks very much.

21

... |--

I.I

I ABOUT THE AUTHOR

Mr. Michael F. McGrath is a Staff Assistant in the Office
of the Assistant Secretary of Defense, (Manpower, Reserve

aAffairs and Logistics). His responsibilities include the
I development of improved policies for the logistic support

of weapon systems, and analysis of the application of these
policies in DSARC reviews of major acquisition programs.
Prior to joining the staff of the Office of the Secretary of
Defense in 1980, he held logistic management positions in
the Defense Logistic Agency and the Naval Air Systems

I Command. Mr. McGrath holds an M.S. in aerospace
engineering and is a doctoral candidate in the Operations
Research program at George Washington University.

22

0

Artificial Intelligence Applications to Maintenance

Anthony Coppola
Rome Air Development Center

EXECUTIVE SUMMARY

The maintenance of mode;Lnmilitary systems employs a variety of
automation. Built-In-Test (BIT) provides on-line fault detection and
some isolation, Automatic Test Equipment --- is indispensable at
intermediate and depot repair stations, and automated maintenance aids
and trainers abound.

These developments were designed to speed maintenance and to
compensate for declining skill levels in the maintenance force. They
are currently far from satisfactory. Modern maintenance is
characterized by excessive false alarms and unnecessary removals at all
levels of maintenance.

The results of these deficiencies are long maintenance times,
resources wasted in unnecessary or inefficient maintenance actions, and
systems out of action which need not be. Correcting these problems
would therefore provide both an economic advantage and a force
multiplier. p

To create quantum improvements in maintenance will require the
application of radical changes to the technology. One possibility is
the application of Artificial Intelligence (AI) techniques to
maintenanze. AI is beginning to see application to practical problems
in many disciplines, and hence is potentially capable of relatively
rapid implementation into military systems.

At present, DoD efforts in applying AI to maintenance are small and
exploratory.

The task of the Artificial Intelligence Applications committee was
to examine the opportunities for applying Al to maintenance, assess the
costs, risks, and development times required, and provide
recommendations to the DoD for action. -

The committee's recommendations are detailed in section 9 of this
report. A summary follows:

1. The DoD should take advantage of the relative maturity of the
technology for creating expert systems. Specific applications of
maintenance expert systems should be started immediately and
multi-application maintenance experts developed and standardized.

Develop maintenance expert systems immediately for current
maintenance applications where the existing ATE has been inadequate.
Permit these systems to be built in any convenient language anu
architecture, except that test programs generated for outside use would
be in ATLAS.

23

75-

Develop versatile maintenance experts for specific domains (eg
digital electronics) capable of use in different systems. System
specific data would be required for each application, but the knowledge
base would remain the same.

Develop a tool to automate the creation of the system specific data
required by the maintenance experts described in the preceding
paragraph.

2. Develop "smart" built-in-test (BIT) systems to reduce false alarms,
identify intermittent failures, improve BIT coverage.

3. Fund applied research in AI for maintenance to improve expert system
designs and to develop other promising applications. Topics could
include automating creation of maintenance manuals, applications to
maintenance information systems, Al based automatic test pattern
generation (ATPG) , VHSIC design for testability, knowledge based
computer aided instruction (CAI), and self-improving diagnostics.

4. Foster an integrated DoD-Industry approach. Coordinate DoD activity
through a tri-service working group under the existing JLC panel on
automatic testing. Encourage private avenues of development; continue
to support industry IR&D in the area.

TABLE OF CONTENTS

SECTION 1. INTRODUCTION

SECTION 2. COMMITTEE APPROACH AND MEMBERSHIP

SECTION 3. ORGANIZATION OF THIS REPORT 9

SECTION 4. ILLUSTRATIONS OF MAINTENANCE PROBLEMS

SECTION 5. INTRODUCTION TO ARTIFICIAL INTELLIGENCE S

SECTION 6. CURRENT AND POTENTIAL APPLICATIONS OF AI TO MAINTENANCE

SECTION 7. CAVEATS

SECTION 8. PRESENT RESEARCH IN Al APPLICATIONS TO MAINTENANCE

SECTION 9. RECOMMENDATIONS TO THE DEPARTMENT OF DEFENSE

24

4

1.0. INTRODUCTION

The maintenance of modern military systems employs a variety of
automation. Built-In-Test (BIT) provides on-line fault detection and
some isolation, Automatic Test Equipment (ATE) is indispensable at
intermediate and depot repair stations, and automated maintenance aids
and trainers abound. S

These developments were designed to speed maintenance and to
compensate for declining skill levels in the maintenance force. They
are currently far from satisfactory. Modern maintenance is
characterized by excessive false alarms and unnecessary removals at all
levels of maintenance. Even with successful use of ATE, throughput is
far from ideal. ATE too often fails to isolate a failure, requiring
skillful human intervention, or expensive "shotgun" maintenance
approaches.

The results of these deficiencies are long maintenance times,
resources wasted in unnecessary or inefficient maintenance actions, and
systems out of action which need not be. Correcting these problems
would therefore provide both an economic advantage and a force
multiplier. S

It can be expected that normal evolution of testing technology will
reduce the severity of these problems. However, quantum improvements
will require radical changes in approaches. One possibility is the
application of Artificial Intelligence (AI) techniques to maintenance.
A! is beginning to see application to practical problems in many
disciplines, and hence is potentially capable of relatively rapid S.
implementation into military systems.

The task of the Artificial Intelligence Applications committee was
to examine the opportunities for applying AI to maintenance, assess the
costs, risks, and development times required, and provide
recommendations to the DoD for action. This report presents their
findings and recommendations. S.

5-
25'.

2.0. COMMITTEE APPROACH AND MEMBERSHIP

From a variety of sources, 28 people were identified as potential
contributors to the study. Each of these waS informed of the study
objectives and invited to contribute position papers describing their
recommendations to DoD with their best estimates of costs, benefits, and
technological risks. All responses were consolidated by the committee
chairman into this report. Considered as a position paper was a copy of S
proposals submitted by the Air Force Human Resources Laboratory to a
tri-service working group. Other inputs were a survey by the Rome Air
Development Center on Artificial Intelligence applications to
Testability and various articles in the literature. The chairmans
consolidation was aided greatly by the technical advice of Mr. Robert
Schrag, who reviewed each iteration of the draft.

The contributors to this report are:

• Anthony Coppola, Rome Air Development Center (chairman)

* Eric J.Braude, RCA

* R.P.Caren, Lockheed lop

e Marvin Denicoff, Office of Naval Research

* Leonard Friedman, Jet Propulsion Laboratory

* Russell M.Genet, Air Force Human Resources Laboratory

* 21t Lorraine M.Gozzo, Rome Air Development Center

9 John H. Hinchman, General Dynamics

• Robert Hong, Grumman

* Robert Schrag, Rome Air Development Center

3.0. ORGANIZATION OF THIS REPORT

The next section of this report will illustrate some of the

problems with current maintenance of military equipment. Following it
will be an introduction to Artificial Intelligence. The next section
will discuss the extent of current applications of AI to maintenance,
and the ultimate, though perhaps not realizable, implications of Al
technology to maintenance. Following this will be a discussion of
caveats and potential traps in applying AI. After a brief discussion of

present AI research in maintenance applications, the final section will
present a consolidation of the committees recommendations to DoD.

26

4.G. ILLUSTRATIONS OF MAINTENANCE PROBLEMS

Figure 1 shows a summary of information compiled by the Air Force
Test and Evaluation Center during tests of the E-3A (AWACS) radar. Of
the nearly 12,000 indications of malfunction, seven percent were
excluded as not relevant to the test program (failures caused by
external causes, etc.) Of the remainder, false alarms outnumbered
failures (items on which maintenance was performed) by more than ten to
one. Although these were recognized as false alarms before starting
through the maintenance chain, they represent at the least a source of
annoyance to a busy aircrew. Of those eight percent considered as valid
indications of failure, 25% could not be duplicated at the first
maintenance check (CND) . These might be additional false alarms or,
perhaps, intermittent failures which occur only under the flignt
environment. In either event, 25% of the first maintenance actions --

accomplished nothing.

Of the remaining maintenance actions, 98% of the failures were
detected by the BIT, leaving two percent to be found by manual means.
This is a creditable performance, but unfortunately not true of all
systems.

When the attempt was made to isolate the failures detected by BIT, S
it was found that the automatic test equipment could not identify tne
failed component in half of the cases, which by necessity reverted to
manual prozedures. Also noteworthy is that 15% of the cases retested as
apparently good (RETOK) , requiring no maintenance.

The message of these figures is that there is too much unnecessary
maintenance, that the automated techniques are contributing to
unnecessary maintenance, that they are not sufficiently reducing manual
troubleshooting, and, perhaps, that some failures are escaping tine
maintenance procedures.

The false alarm problems of AWACS are by no means unique. An
on-board failure recorder for the F-111D proved ineffectual because a
similar ratio of failure indications to actual failures. False alarms
in the F-16 caused innovations in BIT mechanization which will be
discussed later. Outside the military, a study by Lockheed for Tne
Electric Power Research Institute (1977) found the same problem in
Nuclear power plant control rooms. One rather frightening picture in
their report shows a control room in which 65 warning lights could oe
seen. All were ignored by the operators as false alarms.

Another universal maintenance problem is the number of items which
test good in maintenance. Figures gathered from the United States Air
Force, the Canadian Air Force, the Navy avionics repair facilities and
the commercial airlines all show that 30% or more of units in
maintenance test zood. Hence, a significant amount of maintenance is

. either unnecessary or ineffectual.

27

z - I

L<U

LU,

_ _ _ _ _ - _ _ _ _ __o

wi1

wL LU

ruJ 100 LU 0,
cr),

F I

< 0 U

z. ON < U
LU w

28

In March 1983, the Warrer-Robins Air Logistics Center provided tne
following list of maintenance problems:

e Test programs proceed in sequence until a failure is found.
Some of these run as long as three and one-half hours. In one
of these, the most common failure was aetected in the last
segments of the program.

o Memory devices are particularly difficult to test.

* The ATE does not isolate all the failures, leaving those not

found to the ingenuity of the maintenance personnel.

* The fault isolation is too often ambiguous. For example,
while the F-15 ATE normally isolates a failure to a single
part, it can also return a list of suspect parts as high as
15. Memory devices are especially prone to high ambiguity in
isolation.

* The test program may isolate to a string of components, whicn 5
would all be replaced or further isolation performed by manual
means. Some hybrid circuits cost from $300 to $3,000 making
"shotgun" replacement an expensive proposition. Even a string
of relatively cheap parts represents a significant maintenance
cost in manhours if all are replaced.

s The ATE will not isolate chassis problems (eg broken wires)

These problems translate into overloaded maintenance facilities,
increased requirements for spare units in the pipeline, and excessive
costs for labor and consumables.

In summary, there is ample opportunity for increasing readiness
significantly by alleviating these maintenance deficiencies.
Significant improvements in new systems may be possible by merely
designing the hardware to be easier to test. Another approach,
applicable to both new and existing systems is to make the test
equipment "smarter". Significant improvements will require significant
changes in technology, incorporating the techniques of Artificial
Intelligence.

2a-

.- 29

%. ,,

5.0. INTRODUCTION TO ARTIFICIAL INTELLIGENCE

There is no standard definition of Artificial Intelligence. An
often used definition is the capability of a machine to do a task which
if done by a human would be considered to require intelligence. Thus an
automobile would not be an example of Al, since walking is not . .
considered to require intelligence. A chess-playing computer, on the
other hand, is an example of AI.

This definiticn is, however, too simplistic. Under it, all BIT and
ATE would be considered manifestations of Al, since locating faults
requires intelligence. However, the brute force approach of a fixed
sequence of stimulus-response comparisons to preestablished criteria
cannot be considered an impressive show of intelligence in machine or
man. Hence, a more sophisticated definition is called for.

To eliminate the trivial mechanizations falling under the simple
definition, we shall add the criteria that the machine must have the
capability of forming and manipulating abstractions. This would include
such activities as forming hypotheses (eg the location of a failure),
the testing of hypotheses, learning, and inference.

It should be noted that, for our purposes, it does not matter
whether or not the machine solves a problem in the same manner a human
would. While much research in AI is directed at understanding human
intelligence, we will be completely indifferent to the processes
involved, so long as they represent the most cost-effecti-ve solutions to
the practical applications of interest.

5.1. Al FIELDS OF STUDY

There is also no standard breakdown of AI fields of study. For
convenience we shall use a list of topics extracted from "Principles of
Artificial Intelligence" by Nils J. Nilsson (1980,Tioga Puulishing Co.,
Palo Alto, Ca.). In this section we will briefly describe the
objectives of each topic. In the next section, their current and
potential applications to Maintenance will be discussed. The fields of
study are:

5.1.1. NATURAL LANGUAGE PROCESSING.

For our purposes, this field of study includes all attempts to make
a machine capable of understanding inputs in natural language (ie
English) whether typed or spoken. We shall also include the synthesis
of machine replies in written or spoken English.

It has been extremely difficult to give a machine the capability of
"understanding" even subsets of natural language. This is because a
message is understood not only by its text, but by the total experience
of its receiver. For example, consider the following conversation:

"Hungry?"

"I've got a MacDonalds coupon."

"Veys?"

"Here. Let's qo."

30

.. . ..-.-. .fi- ,.m . .., -. _ = - k .. • . _

The many non-spoken portions of the conversation are readily
understood by a human, and the message makes sense. To a machine, it is
a sequence of non-sequitors.

This is not to say that useful language recognition has not been S
accomplished. A simulated robot manipulator called SHRDLU can carry on
meaningful dialogs in the limited scope of its world of blocks on a
table top. KNOBS, an expert system ia development for tactical air
mission planning, has an extensive natural language understanding
capability.

Recognizing spoken speech compounds the problems of understanding
the meaning of the message with problems of recognizing the message
itself. Separating words in spoken sentences has proven a difficult
chore. Practical use is being made of spoken cues to machines where a
cue is a one word direction such as "back","next",or "two". Even here,
the machine must be trained to the voice of its operator and may not
respond to another speaker.

Synthesiting speech is much easier than understanding it as the
plethcra of talking computers indicates. The main problems in speech
synthesis is giving the computer the ability to know what to say.

5.1.2. INFERENTIAL RETRIEVAL FROM DATA BASES.

The design of efficient data bases is a computer science field of .
interest. It becomes an AI consideration when the desired retrieval is
a deduction rather than a stored fact. For example, an AI machine with
intelligent retrieval could solve the logic puzzles which provide such
facts as "John and the engineer went to Bermuda" and "Marie travelled by
bus." with the reader required to deduce the occupation and vacation
choice of all the names provided. Like language understanding, this
requires a store of "common knowledge" pertinent to the problems of P
interest (eg Bermuda is not accessible by bus) as well as inferential
mechanisms. A practical system will also have to understand queries,
making natural language understanding ability a valuable adjunct
feature.

5.1.3. THEOREM PROVING.

There are several programs which will automatically prove
mathematical theorems. The techniques developed for these are of
significant value to other AI applications. Theorem proving methods can
be extended to information retrieval and failure location when these
tasks are formalized as theorems to be proven. (eg a theorem to be
proven could be that a failure is located in a given component.)
Theorem-proving techniques attempt to establish a procedure for -
selectinq from amonq possible rules to apply to the problem and to
establish subproblems leading to the solution.

5.1.4. AUTOMATIC PROGRAMMING.

Strictly speaking, existing compilers are automatic prograrmvrers.
They accept the higher order language and write an object code to do a
specified job. In the Al sphere, the interest is in machines which will
convert high level descriptions, the ultimate being an English input, to - .
an executable program. This could include dialogue between machine and
user to resolve ambiguities. Automatic programming systems can also
provide the valuable added benefit of verifying that the program

31

• . - . . • *'I"-

produced does the intended job. Contributions of work in the field
include concepts of "debugging" as a strategy. It can be easier to
modify a quickly generated erroneous program than to produce a perfect
product on the first pass. Achieving the goals of automatic
programming, will, however, require a long term effort.

S
5.1.5. COMBINATORIAL/SCHEDULING PROBLEMS.

The classic example of this class of problem is the "travelling
salesman problem", in which the solver attempts to find a routing whicn
will permit a salesman to visit a given number of cities with a minimum
distance travelled. Solutions to these problems generate a
"combinatorial explosion" of possibilities. The most efficient
solutions known for this class of problem require solution times wnich
grow exponentially with the size of the problem. AI efforts have been
directed towards delaying and moderating the combinatorial explosion,
using knowledge about the problem domain.

5.1.6. MACHINE PERCEPTION

Understanding of spoken speech is an example of machine perception.
We have chosen to include this under natural language understanding;
similarly, simulation of any of the human senses, and use of sensory
inputs such as infra-red, radar returns, etc., can be considered machine
perception. The problems can be represented by a discussion of the
interpretation of visual images.

Detectors of light intensity can be constructed. AI programs exist
to deduce geometric features such as straight lines and to separate the
boundaries of various solid objects. The ultimate goal is to produce a
high level description, such as "a house with three windows".
Achievement of this goal is yet to come, but here again knowledge of the
problem domain may be the key. (It should be easier to distinguish a
tank from a truck in a convoy, for example, than to identify every
object in a photograph of Times Square.)

5.1.7. EXPERT CONSULTING SYSTEMS

There now exist a numl-)er of automated consultants to aid in solving
various problems, including fault diagnosis. One AI technique employed
in such systems is rule based deduction. Specific domain knowledge ana
problem solving rules obtained from a human expert are used by the
machine to formulate and test hypotneses. The system will create a
dialog with its user to obtain data needed by its rules, and will use
inferential procedures to work with incomplete or conflicting data.

Difficulties in creating expert systems arise in the reduction ot
the experts' knowledge to a set of rules. Even a willing expert may ue
unable to so reduce his knowledge. Representing the knowledge ua~ei
also a key problem.

Obviously, many developments in the AI fields described above will

have their applications to expert systems.

5.1.8. ROBOTICS

Robots are the AI application most visible to the puolic, and
thousands are in practical use. However, the typical application is tar
less sophisticated than the highly publicized experimental models. A
presentation on General Motors robotic applications at the 1983 Annual •
Reliability and Maintainability Symposium pointed out that the rooot in
a work station is often virtually hidden behind a complex of automatic
positioning machinery needed to assure the parts manipulated bv the

32

robot are always in the expected place. Developments in robotics are
aimed at creating planning capabilities to elevate the robot from a mere
manipulator of items in a structured situation, and at coupling machine
perception to reduce its dependence on an orderly environment.

6.0. CURRENT AND POTENTIAL APPLICATIONS OF Al TO MAINTENANCE

This section will discuss the maintenance applications of each of
the AI topics described above. Existing applications of AI in
maintenance or in analogous fields will be described. Techniques on tne
fringes of AI or useful to AI applications will be also be covered.
Potential near term applications will be identified. Finally, the
ultimate implications of the field of study will be postulated. These
are the applications which could be made if all the goals of the AI _
field were achieved. They are, of course, far out both in time and in
imagination, and may never become possible. Nevertheless, tney
represent a set of goals against which progress can be measured.

6.1. NATURAL LANGUAGE PROCESSING.

As mentioned above, SHRDLU can carry on a conversation with its
user about its limited domain. A medical diagnosis system, MYCIN, can
do the same with a doctor about bacterial infections. Hence, it is
certainly a near term possibility that a maintenance system can be made
to converse with its user in a useful subset of English. This would be
accomplished by the user typing in his side of the conversation. The
machine could respond by printout, CRT display or synthesized speech.

Spoken interaction would be highly desirable as it would free the t.
maintenance man from the terminal. He could then nave both hands free
and could operate in remote locations using a portable headset to
consult his computer. At this time there exist maintenance trainers
which respond to voice cues, which is certainly a step forward.
Howe~rer, verbal communication in near conversational style must be
considered a far out application.

6.2. INFERENTIAL RETRIEVAL FROM DATA BASES

Current applications to maintenance of this topic must be
considered only on the fringes of Al, with the possible exception of
Automatic Test Pattern Generation (ATPG) . ATPG is used to generate the
test patterns for digital logic. At present, the machine is superior to
the human in formulating tests for combinatorial logic, and inferior in
sequential logic. Near term possibilities are the improvement of
machine handling of sequential logic and development of ATPG for analog
circuitry. The ultimate potential would be the complete elimination of
the manual part of the process.

On the fringe of AI is the use of computerized models to direct the
testing process. There are three existing programs which will use a

stored representation of an equipment to reduce the number of tests
needed to isolate a failure. The first of tnese was LOGMOD (DETLX
Corp.). The LOGMOD data base is a user prepared logical mooel of the
system. Using this model, a heuristic (rule following) procedure uses
the results of each test made by the maintenance man to direct him to
the next test such that each test eliminates half of the suspect

33

components until the failed unit is isolated. The STAMP program (ARINC)
uses a nodal representation of the system and provides various search
options such as eliminating components with half the predicted failure
rate. The third system, FIND, in development by Hughes, has similar
features.

The Modular Automatic Test Equipment (MATE) office of the Air Force
Aeronautical Systems Division has created a working example of a self-
improving diagnosis (SID) system. This system would be used when a
failure cannot be found by ATE. It would summon manual troubleshooting
and request a record of the successful repair action. These records
would be used to recommend repair actions on future occurrences of the
same failure symptom. While the test model uses only the relative S
frequency of successful fixes for a particular symptom, inferential
mechanisms could be added to detect trends which suggest revisions to
the strategy dictated by frequency alone.

Also proposed by the MATE office is the recording by the SID of the
serial numbers of all items repaired and the application of heuristics
to identify items which return too often. These would be flagged as

*requiring special attention because of the possibility of a chronic
problem not solved by the routine procedure. This feature now exists in
a Marconi ATE system.

6.3. THEOREM PROVING

Theorem proving techniques, as mentioned, are used in AI p
applications in the other fields of interest listed, particularly in
expert systems. Their contributions in these applications will be
covered in the appropriate discussions. There is one application which
is well worth noting here.

BIT signals are too often false alarms. In addition, intermittent -_

failures are difficult to distinguish from false alarms. Theorem
proving techniques could be employed to test BIT signals to discriminate
against false alarms and to identify intermittent failures.

A simple procedure was used by the F-16 to evaluate BIT signals.
Each signal was stored and the BIT checked again after a short time. If
five out of seven checks agreed on a failure indication, the BIT latch
was triggered. Smart bit would extend this to such actions as changing
the decision threshold, adjusting the bit sensitivity, and identifying
intermittent failures. Smart BIT systems on individual weapons systems
could compare their memories to identify unusual circumstances. The
comparison might, for example, show one system with more than expecteu
failure indications indicating some problem with the platform (eg a
faulty environmental control system). With incorporated environmental
data, smart BIT could help locate an identified intermittent failure. _

The Boeing OBIT circuit and the Battelle stress meter are designed to
record environmental data and could be added to the smart bit. Smart
BIT is considered a near term possibility.

6.4. AUTOMATIC PROGRAMMING

ATPG, mentioned above,can be considered an example of automatic
programming. There are also programs which assist a test engineer in
creating ATLAS statements for test equipment, though these are not

34

o- .****.. . .. 7

really sophisticated enough to warrant the title. The ultimate

application of automatic programming will be the real time generation oL.

ATLAS test vectors from a computerized representation of the system, .aS

they are needed by an expert system isolating a failure. Tnis is

definitely not a short term goal.

6.5. COMBINATORIAL/SCHEDULING PROBLEMS

Work in this topic can be used in the near term to develop models
for queuing maintenance for minimum impact on system down time. It can

also be used to design for fault tolerance of distributed systems such
as command and control systems or for fault tolerance in VHSIC chips.

A!
The ultimate potential of the techniques would be in real time

maintenance scheduling and in real time reconfiguration of networks
around a failed component.

6.6. MACHINE PERCEPTION

Current AI programs can identify shapes. On a simpler level, the-S
Marconi ATE mentioned above will read serial numbers marked in bar

codes, and optical character readers are available to read stylized
alphanumerics. We can thus easily produce systems which will read
information printed on a board, but this will be of no use until the ATE
is programmed to make use of the information. In the near term we can

add automation to ATE letting it call its own test programs from its
identification of the board. This could be of value in that it would

eliminate some of the duller responsibilities of the maintenance man.
In the long term, machine perception can be used to get full value from
robot sy-tems by recognizing rotations and displacements of items to bO
tested, which, with an appropriate control program, will eliminate the
need for items to be fed to the robot in a rigidly controlled manner.
Presuming a robot fed ATE system, the automatic identification features
would become quite useful, as the human would be needed only when the

machine required intelligent help. With ambulatory robots, perception
could be used to locate particular boards in an equipment for removal by
the robot and conveyance to the ATE.

6.7. EXPERT CONSULTING SYSTEMS

Expert systems are in practical use today for configui'ng computer L
systems (RI) , and are available for medical diagnosis (MYCIN,CADUCEUS)
and locating mineral deposits (PROSPECTOR). There are also expert

systems in various states of development for fault isolation. These
include DELTA for the maintenance of locomotives, REACTOR for nuclear

reactors, CRITTER for digital circuits, IDT used on a computer, and DART
designed for computer hardware. Hence, maintenance expert systems are
relatively near term possibilities.

The diagnostic search programs (LOGMOD,STAMP,FIND), mentioned
above, would seem to be a valuable adjunct to an expert maintenance
program in that they can be used by the program to set up its strategy
from the design of the unit under test.

An expert system requires a knowledge base of its domain. At

present, this is provided by the user. LOGMOD, et al, require user

layout of the system and user generation of appropriate tests. The

3 5

p..

ultimate expert system would use advances in automatic programming to
perforn fully automatic testing by deriving its knowledge from a macnlu.-.
read schematic, forming its strategy from that knowledge, and generating
appropriate tests as it needs them.

Once the ATE has the knowledge it needs to operate as an expert
system, it can also be used as a maintenance aid to direct a human wnen
his intervention is necessary. It could also provide the interaction
needed for training its operator. Thus the expert system would serve as
ATE, maintenance aid, and training device. While probably not a short
term effort, the integration of maintenance aids should not be a far out
proposition. Integrating a training capability will be a long term
proposition needing advances in computer aided instruction (CAI)
techniques.

Computer aided design (CAD) programs can be considered a form of
expert system, even though their current approaches may not be
considered to be examples of AI. The Rome Air Development Center is
studying the incorporation of ease of test considerations to CAD
programs. From these can spring an expert system which wnich will S
create a design with a minimum of maintenance problems. This will
require the creation of a set of design rules for ease of maintenance
and a set of rules to trade these off against other considerations such
as thermal design, wiring constraints, etc. The design rules should be
a near term possibility, but creating the trade-off rules will be a more
difficult task. -

6.8. ROBOTICS

Current use of robots is mostly as programmable manipulators. At
least two companies have designed robot manipulators to feed test " "
samples into ATE. Another immediate possibility is the handling of the
adapters which form the interface between test samples and the ATE,
relieving the human of the need to manually change adapters. Near term
possibilities are the use of machine perception permitting the robot to
work in an unorganized environment (eg correctly feed printed circuit
boards piled randomly on a table.) The far out application is the use of
an ambulatory robot with an expert system to perform completely
automatic maintenance.

36

41 •.

7.0. CAVEATS

Herbert Dreyfus, a critic of AI, divides intelligent activity into •
four classes. His lowest class, Associationistic (learned by memory)
includes such examples as maze problems. The next higher class, Simple
formal (learned by rule) includes games like tic-tac-toe and the proof
of theorems using mechanical proof procedures. These problems are
easily handled by Al techniques. The highest class, nonformal
activities, (learned by example) includes problems which Dreyfus sees no
possibility for solution by AI techniques. These include natural •
language translation and ill-definel games such as riddles. The
remaining class i.s complex formal (learned by rule and practice) which
includes uncomputable games like chess and proof of theorems where no
mechanical proof procedure applies. Here AI is most difficult to apply
and this is the realm of maintenance problems. Fortunately, as the many
chess-playing programs attest, the difficulties are not insurmountable.

As with all new technology, applications of AI cannot be made
carelessly. Besides the natural limitations and technical constraints,
we must consider the impact of AI on the maintenance personnel. We
shall now briefly discuss some potential traps.

The natural limitations of AI arise from the fact that we cannot
build a machine which duplicates the intelligence of a human. Hence, we _
cannot create a machine which will understand natural language, because
we cannot build in the total experience that a human uses to interpet a
message. We can only hope to give it sufficient ability to communicate
in its domain and some capability to add new words to its vocabulary.

It will be a long time, if ever, that a machine will have a true
ability to learn. No plans should anticipate such a capability until .evidence of significant progress is available.

In creating expert systems by reducing the experts operation to a
set of rules, we ignore the fact that expertise is a behavior rather
than a set of rules. If the rules will suf±ice, the system will be
successful. If not, we must provide for the human to take over asnecessary. ...

Technical constraints on AI include processing time and memory
requirements. Al programs are noted for filling up large machines.
While higher speeds and larger memories are still being developed,
practical applications must recognize the limits. As an example, ten
factorial combinations is not a large number. Yet if the analysis of
each took 23 milliseconds, the problem would require 24 hours of macnine
time. As another example, there are approximately 10 to the 50th power
atoms in the earth. This is far smaller than the possible number ot
moves in a chess game. Hence, the combinatorial explosion is sometning
to be avoided in AI programs, as the chess-players do by pruning their
search trees.

LL

37

- -..0.

AI programs are typically begun as small feasibility
demonstrations. Trouble begins, however, when one attempts to scale up
the program to handle real world complications. Hence, the technical
limits to an available technique must be considered before its
application to a new problem. p

Finally, in applying AI to maintenance we must consider the
man-machine relationship. Declining skill levels promote a temptation
to follow a "smart machine-dumb man" philosophy. If the man is subject
to direction by a machine which does not credit him with any capability,
then:

* Any capability he has is wasted

* He will not improve in capability

* He will find no satisfaction with his job

The items listed above are not only demeaning to the man, they can
create a dangerous working climate.

For this reason, Al applications to maintenance should to the
greatest extent possible be designed to adapt to the skill of the user,
and serve as a means to improve his skill. There are considerations
which can be made. Intelligent trainers now exist which will adapt .
their mode of operation to the needs of the student. There is no need
for an expert system to communicate by a fixed list of questions to the
operator. It can begin by asking for the operators findings ana
conclusions.

Al systems must to the extent possible be designed so that the
human will consider it as a partner rather than as an inanimate tyrant P
for which the human performs trivial functions.

38

'S

8.0. PRESENT RESEARCH IN Al APPLICATIONS TO MAINTENANCE

A rough estimate of FY-83 funding in AI research is the range from
$36 million to $46 million. Of this, DoD agencies account for $20
million, and other U.S. agencies, $6 million. The majority of these
funds are 6.1. Industry will spend an estimated $10-20 million, which
can be considered mostly 6.2.

Of these funds, we have identified $0.3 million being spent by DoD
agencies in studies of Al applications to maintenance, and this amount
is spread equally among three studies. These are:

(1). A study by the Rome Air Development Center to determine the
opportunities and risks of AI applications to Testability, awarded
April, 1983 to Boeing. -

S
(2). A study by the Naval Air Engineering Center to develop AI

applications to Navy ATE, award pending.

(3). A study by the Air Force Human Resources Laboratory to adapt
medical expert systems to maintenance, awarded Feb. 1983 to Systems
Exploration.

In addition, there are some other efforts, such as an AFHRL study
of Al applications to training, which will provide results useful to
maintenance.

In FY-84, The MATE office will continue its work on Self-improving
Diagnostics, which was unfunded in FY-83. RADC will begin an effort to
develop designs for Smart BIT. The Air Force Institute of Technology
will be working with RADC and Warner-Robins Air Logistic Center to
develop an experimental expert system for depot maintenance, aimed at
specific problems of WRALC.

There is a significantly greater amount of Industry IR&D directed
at applying Al to maintenance. A rough estimate is $3 million in FY-83.
this does not include capital investments, such as GE's development of
DELTA to aid in locomotive repair.

In summary, current DoD efforts are small and exploratory.

39

9.0. RECOMMENDATIONS TO THE DEPARTMENT OF DEFENSE

Despite the fact that the members of the committee worked

completely independently, there is only one area of significant
disagreement in the position papers. This is the recommended language
in which Al programs should be written. An area of general agreement
was that expert consultant systems can, and should, be applied to
maintenance now. There was even a general consensus of the development
resources required for an expert system: two years time, $200,000 in
computer costs, and five to ten man-years per year. However,
discussions after review of the position papers would cause these to be
considered minimum projections, with perhaps double the computer
resources and five years of time required. The following

* recommendations are the chairman's consolidation of the position papers,
discussions with the RADC contributors, and his derivations from the
information given above.

RECOMMENDATION NO. 1

The DoD should take advantage of the relative maturity of the
technology for creating expert systems. Specific applications of
maintenance expert systems should be started immediately, and multi-
application maintenance experts developed and standardized.

The DoD should immediately develop expert systems for existing
maintenance applications where maintenance is particularly troublesome.
As an example, the AFIT-RADC-WRALC program would attempt to create a
system to work with the F-15 analog printed circuit board test station.
It would first be programmed with the knowledge required to troubleshoot
only one board, the most troublesome of those the ATE handles. This
would show the value of the approach and permit debugging of the system.
More krowledge would be added incrementally until the system handled
every board assigned to the original ATE. At this point, it would
hopefully be cost effective to scrap the original system. If not, the
expert system would still earn its keep by its superior handling of
problem boards. Each service could pick a promising candidate (a system
which is not handled well by the ATE, and for which expert maintenance P
personnel are both available and willing to cooperate in creating the
expert maintenance system). As it builds and refines the maintenance
expert system, the service would improve the operational readiness of
the candidate system while it gains experience and confidence with the
AI technology. No risk would be involved, since the existing ATE would
still be in place. Resources would be two to five years calendar time,
10-20 manyears of effort and $200,000 to $500,000 in computer costs for
each system. Each system would pay for itself in short order, by
reducing maintenance time as much as 50%. However, the real value of

* these first efforts would be in the knowledge gained.

To permit immediate 3pplication, the first AI maintenance systems
should be built in the language and architecture most convenient to the
builder and user, with a blanket exemption from any current policies on k

400

b40

... a tll i I m0

I "-
languages. The only exception would be that any test sequence generated
by the system for outside use would be in ATLAS. No cost involved.
Will cause a proliferation of languages for first systems, but will
permit earlier implementation, by years, and provide information needed
for ultimate standardization. (Chairman's recommendation based on
conflicting inputs in position papers.)

To improve cost-effectiveness in the longer term, the DoD should
develop versatile maintenance experts for specific domains, such as
digital electronics, which are used in many different systems. They
would contain the necessary theory and diagnostic strategies for their
specific domains. They must be user friendly (interact in a subset of
English, explain their actions, and adapt to the skill of the user), B
and, presuming progress in computer aided instruction (CAI) techniques,
each system could ultimately serve as an integrated ATE, maintenance
trainer and training aid. One basic system (for one domain) could be
built in two years with 10 manyears effort. System specific data bases
would be incorporated during the development of the systems to be
tested. Refinements would be added as developed. Benefit would be the
elimination of the need for reinventing the engine for every
application, easily worth millions in development and training savings.
Technical risk is moderate.

Further improvements in cost-effectiveness would be made possible
by developing a system building tool to automate the creation of tne
system specific data required by the expert system discussed in the -
preceding paragraph. The tool would extract the needed knowledge either
from a human expert or, ideally, from a description of the system to be
tested. This will minimize one of the major costs of the expert system.
Cost would be about $200,000 a year in computer costs and ten manyears
per year. A prototype could be available in two years, but it might
take a five year program to complete a supportable product. Benefit
would be significant savings in time and elimination of errors for every
new system to which it is applied. No more than five applications, if
that much, would repay the costs with a dividend in earlier test system
availability and easier modification as the design of the system under
test changes. Technical risk is presently considered high.

NOTE: The expert systems would eliminate the long test programs
now used in conventional ATE. This feature can be incorpcrated into
conventional ATE systems. To do so the DoD could prohibit all new ATE
systems to use inflexible sequential test procedures. Instead require
the use of segmented test programs which are called out in the order
needed for most rapid fault isolation using the strategies now availaole
in LOGMOD, STAMP, and FIND. Cost will be a significant increase in
effort required to program the ATE and some additional memory. Will
probably permit the elimination of one maintenance shift, paying for
itself in one year or two. (Chairman's recommendation)

RECOMMENDATION NO. 2

Develop "smart" BIT for digital electronic systems to minimize
false alarms, identify intermittent failures, improve coverage of BIT.
An RADC proposed FY-84 effort hopes to provide design concepts which
could be used by individual designers to construct smart BIT in their
particular applications. A complete series of studies leading to the
design of an on-board knowledge based monitoring system or the design

41

P ~

and test of experimental BIT systems could run two to four years and on
to six million dollars. Benefits are incalculable since they incluut
the worth of reduced mission aborts due to false alarms. More tangible
benefits could be a 90% reduction in false alarms, and the decrease of
the portion of units sent to repair which test good, from the present
30% to pernaps 10%. A successful application should pay tor itself in
two years of operation on one system, and provide a measurable
improvement in the ready rate of the system using it.

RECOMMENDATION NO. 3

Fund applied Research and Development of Al for maintenance, both
to improve the capabilities of maintenance expert systems and to apply
Al to other maintenance applications. Some specific topics are:

1. Automating the creation and pLesentation of Technical Manuals.

2. Applying AI to Maintenance Information Systems and databases.

3. Developing crisis alerting systems. a
4. For expert maintenance systems, developing requirements for

languages and computer systems, techniques for improving user
friendliness, and more sophisticated approaches (eg means of forming
rules from the circuit itself rather than from an expert familiar with
the circuit). .

5. Developing AI systems for Automatic Test Program Generation
(ATPG). The current AI programs used to develop test patterns for
digital combinatorial logic should be extended to sequential logic and
analog circuits. Systems should work from the circuit description and
provide test vectors in ATLAS.

6. Applying AI techniques to VLSIVHSIC design for fault tolerance
and testability. This should be incorporated into the VHSIC phase three
study plans.

7. Developing knowledge based computer aided instruction (CAI)
systems for maintenance training. Note: this could ultimately be
incorporated into the ATE itself.

8. Developing self-improving diagnostics and test program sets.

Other topics will be identified by the FY-83 studies begun by RADC,
NAEC, AFHRL. Recommend 6.2 programs be started by all three services,
funded at one million dollars per service per yeor, to begin work.
Promising developments should be followed by 6.3 projects with •
appropriate higher funding.

RECOMMENDATION NO. 4

Foster an integrated DoD-Industry approach.

Coordinate the various efforts of DOD agencies through a
tri-service group on Al applications to maintenance. Recommended group
would be a committee under the JLC Automatic Testing Panel. It could
also be under JDL working group for AI, but seems more appropriate for

4 2

-' ~~42 • "-

i... .. 7

the Automatic Testing Panel because of its interface with other
committees. Participants would include all service agencies involved to
share responsibilities and avoid duplication of effcrts. it would also
provide a contact point for DoD and industry. (cniai rman' s
recommendation)

Encourage private avenues of development of Al applications to
" maintenance: continue to support industrial IR&D in the area, express

DOD interest at appropriate meetings, provide copies of this report to -
Industry. The NSIA Testability Committee, which parallels the JLC
panel, should be encouraged to create a subgroup on AI applications to
serve as an industry focal point. The close working relationship of the
NSIA committee and the JLC panel would be a natural avenue for creating
a dialog on AI applications. (Chairman's recommendation.)

4

p .

L

4" .
I-__

43, "

ABOUT THE AUTHOR

Mr. Anthony Coppola is Chief of the Reliability and
Maintainability Engineering Techniques section of the-
Rome Air Development Center (RADC). His primary
responsibility is developing methods for predicting,
demonstrating, and improving the reliability and
maintainability of Air Force electronic systems. He is also
the Director of the RADC program to apply Al techniques
to improve fault detection and isolation. He holds a
Master's degree in engineering administration from
Syracuse University.

A-

44

I .S~ubmm~bmm~m~mmhm~Ii.bm•mi,

* LC)
On Applying Al to Maintenance and Troubleshooting

(V)Dr. Ken DeJong
o Navy Center for Applied Research in Artificial Intelligence

0. Im really here wearing two hats today. The Director of the Navy Al
Center, Jude Franklin, was unable to be here today, so I will be sitting in on some
of the executive sessions and so forth for the Al Center. Let me say briefly for

i(him that we're delighted, not only to be here participating in the workshop, but to
be participating in the joint initiatives at the Joint Directors of Laboratories
(JDL) level. We are really excited about it and looking forward to it, and we
certainly invite any of you to stop by the next time you're in Washington, D.C. In
the last couple of years we've put together a fairly nice collection of hardware,
software, and a working environment which has kept me around. In fact, there's
kind of a standing joke at the Al Center--"Name the visiting scientist who's been
there longer than most of the staff."

Initially, when Jeff and I were planning the workshop, we thought maybe
I would give a little bit of an overview of Al. We already know that there's no
reason for that. We talked a little bit later about giving an overview of AI and
ATE, but as the quality and number of presentations increased, it was pretty clear
that you were going to get a very good overview of Al and ATE during the 3 days.
So Im going to take a little liberty and wax philosophical in hopes that some of
the concerns, some of the issues, some of the experiences that we've had over the
last 2 years will strike a common chord with you, and perhaps you will be able to
avoid some of the tar pits we've seen in the last couple of years. Also, I'm a little ...
bit concerned that this workshop has lapsed into a conference mode. There is a
psychological barrier as soon as we set chairs out there and put a speaker up
front; you become passive and I become the actor. So, I deliberately tried to
include some controversial material in my talk, at least I think it is, to try to get
a little real-time reaction out of you, rather than having you come up after lunch
and say, "You know, during your talk," Well, it's too late then, because I
want to get you involved now.

We've been through a lot of agony over the last 2 years at the Al Center
in deciding what in the world we are going to do with this emerging technology.
What problems are of concern to the Navy? Which subsets of those problems,
hopefully slightly larger than the null set, appear to be applicable to the AI
techniques that are coming out of the Al laboratories? I've talked and visited
with enough people from the other Navy labs and from the industrial areas to
know that you are going through, or have gone through, these same kinds of
agonizing discussions--trying to explain to managers what it is that Al can do for
you.

The thoughts I would like to give you today are some of the issues that
I've seen come up in the last couple of years. One that we've seen already (I think -
it's my pet peeve) is the AI hype. I'm really concerned about it because I think
we've gone through a series like this once before. In the 1960s we had our

45

tp

rose-tinted glasses on; we could do no wrong; we were projecting rapid increases
in the performance of our systems; and we found out, in fact, that we were on the
bottom end of an exponential explosion in difficulty. There was a lot of negative
feedback in the early and mid-1970s, but with our short-term memories, that's
kind of been forgotten now. The pendulum has swung back. We're back again
talking about dumb systems and smart systems in terms which carry a lot of
emotional content, but have very little to do with the technical content of what's
going on. Already a comment was made this morning to avoid terms like dumb
and intelligent, and I really think that's important. I think we ought to talk more .
in terms of the deliverables of these systems. You look at a system and say it's
dumb. Well, what do you mean by dumb? Dumb is a very vague word. It means it
can't adapt. OK, so you want a system that's more adaptable? What does that
mean? Well, it means it ought to be able to remember from one time to the next
what has happened. And so on. The point here is that it is important to quickly
get into the specifics of what you mean by making something "more intelligent."
Another point of concern is that you've got a lot of people out there, operations
research people, engineering people, and so forth, who have been attacking these
problems from very legitimate points of view--totally different from AL And so
you take one of those systems and immediately label it as dumb. You've gained an
enemy for life at that point. And of course, as soon as you deliver your system,
you know what you're in for from the other side of the fence.

One of my concerns, particularly at the higher managerial levels, is that
Al is viewed as some sort of a magic wand. And when you come and wave that
magic wand, multi-sensor fusion goes away. Or very ill-structured problems like
understanding natural language suddenly become simple and well-structured
because of AL It's tempting. It's both an advantage and a disadvantage being in
the Al community. It's easy to hype and people somehow believe what you say.
On the other hand, it's very difficult to deliver because their expectation level is
built on nontechnical terms that we use to promise what we're going to deliver.

Point number two is watch out for tar pits. It's so easy to say things
like, "Well, you know what this system needs. What I'm going to concentrate on
for the next 6 months is to give it a natural language interface because it's not
user friendly." And away we go with a simplistic view of what it means to add
natural language. We build a dictionary and develop some primitive parsing
techniques, maybe even something as simple as keyword based, and we go about
trying to create the "Eliza" illusion. That is, being able to understand words or
sentences or strings of things that look like natural language, but the deep
semantic content behind them is totally missing. And so you build your "natural
language" front end and demonstrate it with a few well-chosen examples. All of a
sudden you've built up in the naive user's mind a model that this thing really does
understand English, when in fact it's keyword based. It's picking out a few
keywords that you've carefully chosen for your examples, and as soon as you leave
the room, the system goes off into left field and the user can't make any headway
at all with it. It's not that we shouldn't work in natural language--it's that it can
be a tar pit. That is, to really handle the deep semantic meaning that you have to
capture between the user and the system can involve years of intensive work.
We're involved at the Al Center right now in looking at parsing military messages.
The particular group that we've been focusing on for the last year is called

46
S .

casualty reports, for some reason, but they really are reports about equipment
failures that get circulated in the Navy.

When you start to look at these messages, the amount of background
information that's required to handle them properly is amazing. If you read
something about fixing a piece of mechanical gear onboard ship, immediately
what comes into your mind is a picture; that is, your model of what that
mechanical gear is and what it means to fix it. You fill in all the blanks, all the
missing material from the textual words using this model that you have in your
head about what it means to fix that piece of gear. And to really do it right, that
kind of deep understanding is frequently required--that's where the 6 months goes
to 12, goes to 18, and so on.

Another tar pit that is quite easy to step into is the idea of common
sense reasoning. We have this funny dichotomy that we're very impressed with
programs that play chess, or programs that do medical diagnosis, or find oil wells
or whatever. But we're not particularly impressed at all with our ability just to go
out to lunch today, or to get up and walk out of this room. We use tremendous
amounts of real-world knowledge without even thinking about it, and it's amazing
how much of that kind of knowledge you have to build into some of these systems.
Simple little things like child-parent relationships may come into play in a natural
language interface, or relationships about commanders and their subordinates; P
things that we take for granted, but that have to be captured in order to
understand the interface between the human and the system.

Question: Could you give an example of why it would need to know
commander-subordinate relationships?

DeJong: For example with Navy reports, one of the issues had to do with
routing of messages. Who should see what? Under what circumstances? You get
into all kinds of protocol issues. Do we want him to see it? Should she see it? Is
it politically required of me--those kinds of questions. You have to build up a
whole model of the chain of command, as well as the politics behind the thing, to
make decisions like that.

One of the areas that I'm interested in, but I believe right now should be
considered one of the tar pits, is the area of learning. Many of you may have been
through building an expert system or an Al system of some sort and realize what a
difficult process it is injecting common sense, as well as technical expertise. It's
a very seductive approach to say, "Hey, the way we can get out of this is to not
have to hand-code all this stuff, but to get the machine to learn it. That is, we'll
give it a few baisic facts and some learning rules, and away we go." Well, that's
true in a very superficial sense. However, even though our knowledge about
capturing expertise in some formalism that we can convey to another person or
another machine is still primitive, our understanding of how we learn that
expertise or how someone else learns it is even more incomplete. And so, instead -
of improving the problem, you get sort of an infinite regress. Now you get
involved in trying different learning techniques: Do they converge or don't they?
What kind of deep knowledge about the world or about the subject do we need to
know in order to implement these learning algorithms? And so we get farther and

47

°,. ~ --:

farther away from our original goals. It's not that learning is not important; it's
just that it's not one of those up front deliverables that you should be promising . -

right now. •

Question: I'd like to say I strongly agree with you and think it's very
unfortunate that we call these systems intelligent. What does it mean to call any
system "intelligent" that doesn't learn, and how many systems that have been built ""
throughout the whole history of the field have what one might call respectable,
serious learning components? Maybe we should just shorten the whole thing to
"Al" and let people think that it means "automatic inferencing"--sornething more
modest.

DeJong: In the little biography that was read of me, I deliberately said
that I was interested in adaptive systems. That's one useful way I think of
avoiding this idea of dumb and smart. Another useful term is flexible, or .
something like that, to get away from some of the rigidness. Those aren't
emotionally charged terms, and I tend to prefer that sort of thing.

Comment: I've always picked on the term "artificial" as being a wrong
term. I always thought "pseudo" would be a lot easier to sell, because nobody
feels that it's going to step on their territory.

DeJong: I guess I would prefer something like just "intelligence" or
something like that. People claim they're really trying to build up models of
human intelligence at the same time, that the two go hand in hand and are just
two sides of the same coin. The question is, "At what point in time does it
become artificial as opposed to real?"

Comment: John McCarthy, who coined the term artificial intelligence
at a conference at Dartmouth in 1956, later realized the absurdity of the term
and tried to replace it with the term "cognology," only to find out that just
because you've coined a term doesn't mean you can retract it so easily.

DeJong: Another thing that concerns me a little bit is some
misrepresentation or misunderstanding of the current state of Al. Largely
because of the success we've seen in the expert systems area, one immediately
says, "Gee, this whole At field is something that's ready for immediate technology
transfer." We've seen a few, highly visible examples, primarily in what you might
call the expert system paradigm, that have moved successfully out of the labs and
into more practical applications. But I don't think that that's true of the At field
in general. If you talk to many of the major practitioners in the field, they will
tell you that right now we are an empirical science. We don't have a lot of strong
theories yet about what we can or can't do or what kinds of problems are well
structured in terms of solving At techniques and what aren't. We have some
specific data points which have suggested some theories, but we're primarily still
empirical in nature. So if someone comes to me and says, "Here is a problem. A-
Can you tell me if I should use Al or not?" I don't have a strong theory or even a
good set of heuristics at this point that can answer that very well. I give them
the classical answer, "Try it and see." That's what we do right now. We don't
have theories to do strong forward predicting, but we've got some very strong

48

tools for doing fast prototyping at a very high level. This allows us to get some
feedback as to whether or not these kinds of things are feasible. It's very difficult
to predict success or failure ahead of time, the kinds of things that people at very
high decision making levels would like to see. They say, "Give me probabilities" A
and "What's the risk of this?" The answer in most cases is you're dealing with high
risk, but high payoff. Can you live with that or not?

Question: What kind of high risk?

DeJong: An example of the kind of risk we're talking about is the area A
of applying ATE to maintenance and troubleshooting. A year and a half ago there
were very strong arguments within the AI community as to whether or not the
successes in building medical diagnosis systems would transfer to this particular
area. We had no good data points as to whether or not that would happen. To a
certain extent we still don't have strong data points. There were people who said,
"It's a trivial transfer. It's exactly the same reasoning mechanisms; all you've got A
to do is just throw away all the domain dependencies. Give me an empty shell and
shove the new knowledge base back in." Has it happened? No, it did not.

The questioner started out by saying what do you mean by "high risk?"
What I mean is that we don't have any strong theories that will predict ahead of
time whether or not that transition will take place. So risks are high in the sense A
of willingness to foot the bill for trying it and potentially failing. But if we win,
we win big, in the sense that we've accomplished something that hasn't been done
before.

Comment: Generally, there is a very simplistic notion of what it takes
to build an Al system. You're throwing money at the problem and chances are
you're not going to make it that way. However, there are people who realize this
is too simple. And, there's a very small, not very visible group of people who are
asking, "Can we characterize different types of problem solving in such basic way
that you can look at a problem and if you are able to decompose it into the kinds
of problem solving that you know how to do, then it's not that hard to build an
expert system and it's no longer high risk." So the high risk comes from buying all
these machines and spending months trying to build a system. You can go to an
analytic state in which your risk is minimized.

DeJong: I'm with you 100 percent and we understand that that's a
problem but the point is that that technology is not at the point of maturity yet
that we can use it with high reliability. That's the current state right now. Now
whether that's the case a year or 2 years from now, we don't know. We are still
gathering those empirical points to help us build those theories which allow us to
make those kinds of predictions. I, for one, don't believe that I can predict
success or failure at this point. I have strong opinions, but you may or may not
believe them.

Question: Another problem arises each time you get into a different
domain and try to organize it in terms of artificial intelligence. Don't you find
that you now have to solve problems that were inherent in that domain that those
people have never solved? They really don't understand their own domain
thoroughly and we have to.

49

'-i

DeJoni: I think one of the major contributions, for example, of the
expert system paradigm is not the systems that are built as much as the gaps in
knowledge which are exposed during the building process. Attempting to codify
knowledge in one form or another, whether it's in book form, or rules, or semantic
nets tends to expose poorly understood areas.

Comment: There's a notion here that primarily empirical sciences work
their way toward becoming strongly based theoretical sciences. It seems to me
one thing that hasn't been elaborated on is that most of the other sciences that
have done that have been much more formally and rigorously empirical than Al
has. AI not only tends to study heuristically, it tends to da its empirical work
heuristically. So that the learning is not codified in a way that would produce
strong theories.

DeJong: I agree with you, but like the point that was brought up before, .1,
there is a silent majority or at a least a silent minority that is trying to do that
kind of thing. Unfortunately, some of the visible stuff that you see in the Sunday
Times doesn't. But in the field there is a strong subcomponent that believes very
strongly that you have to advertise in order to advance the state-of-the-art.

Comment: I don't think we should beat our breasts too much about the
fact that we don't have a strong theory in place right now. If you look at the
history of most sciences, on the one hand, there have been alternating attempts to
establish a strong theoretical base and, on the other hand, very empirically
motivated attempts to get something put up and running. I think that you can't
ignore either, frankly. They interact with one another, and I think that's been
true in the history of AL

Question: Al is not an empirical science like the other sciences are
where you've got data that you collect in the lab and you have theories to account
for that. What does a theory in Al look like?

DeJong: Well, certainly theories about problem solving--what kinds of .
mechanisms are involved there? We use mechanisms of analogy, inductive or
deductive reasoning, and so forth. We are trying to somehow get a theory that is
capable of predicting the success or failure of attacking a problem in a certain
way; trying to capture the dimensions of problem solving in such a way that we
can analyze. I don't mean to focus just on problem solving, but that is an example
of the kind of theory that you'd like to have.

I'd like to reinforce the idea of the knowledge representation problem.
It's come out here several times. We have lots of knowlege representation tools

that have been tried and tested- -semantic nets, frames, production rules,
blackboard models, and so on--as ways of trying to capture the kind of knowledge
that we need to do problem solving. They're tried and tested in the sense that -_
they are known to be useful for certain things and they are known to have glaring
weaknesses. I think the mature perspective is that these Al techniques may be
useful in certain contexts, but none of them individually are capable of cutting
down problems left and right. The evolving generation of Al systems is going
toward complex combinations of such techniques. Our early hope that picking a

50

simple approach, like a rule-based architecture, would allow us to really scale up
and handle tough problems is a little bit naive. Now, maybe that's a controversial
statement. I happen to be familiar with Harry Pople's work at the University of
Pittsburgh. His medical diagnosis system has now gone through two, three,
probably four generations. What's very clear is that the underlying knowledge
representation is increasing in complexity with each go-round. He now has
something called the "tangled hierarchy," which, if you've seen it diagrammed, is
a tangled hierarchy, believe me. I think we're at the point now where that ought
to be the perspective, rather than assuming a single tool will suffice.

Comment: That kind of view is being recognized. For example, there's a
very substantial development at Xerox PARC. A system called LOOPS, which
tries to integrate rules, procedures, data, and objects in a single coherent
framework.

DeJong: Yes, there's no simple answer to the argument about whether
knowledge should be procedural or declarative. LOOPS is a good example of a
system which provides a collage of tools, and encourages the use of a particular
subset that appears to be appropriate.

Even so, it's still an awesome task to even think about the problem of
somehow building up a data base of common knowledge in a general format that
we wouldn't have to reimplement with every system we build. I'm not even sure
we know how to begin. We now have word processing dictionaries and the natural
language people are passing around dictionaries. Anybody starting to build up a
knowledge base of facts in a common format that we can pass around?

Comment: The truth is there's a project started at University of
Massachusetts with about four other universities on that; it's a very large data
base.

DeJong: Good. To go on, one of the things that very clearly came out of
that first go-round with building expert systems is the knowledge acquisition
problem. Where do you get that knowledge from and how in the world do you
extract it? If you're extracting it from humans, that extraction process itself is
an art. You ought to hear Harry Pople talk about how many agonizing hours he's
spent trying to get problem solving information out of a cooperative expert. He
says, "He doesn't deliberately mislead me; he just hasn't thought about it before."
Performing an expert task and explaining how to perform it are two quite
different things. Jim Slagle at the AI Center has been building a program to help
the Marines with decisions on the battlefield. One artillery expert told him, "This
is the way to do it." Then the expert got rotated out and the new artillery expert
said, "That's not the way to do it. Throw it out and start over." We don't know
how to reconcile thesc types of different points of view at all.

Question: If the problem is attacked by human experts in different ways,
to what extent is there any kind of empirical verification behind developing a kind .
of meta-theory of problem solving?

DeJong: At this point, very little. We don't even have good intelligence
tests after many years of trying. .

51

PL-

' --. -. -. -" - - - . " . . -' " -. .r . , - ". . - 1 11 . 1 1 1. "
" - r- ' . " - : . "- " " ° • .

Another thing that is really easy to trivialize is the complexity of the
whole reasoning process. We're starting to build up little submodels of various
facets of the reasoning process. But it's important not to get hung up on any one -
of these. A lot of work has been done in the areas of inductive and deductive
reasoning. There has been interest, but not a whole lot of success, in temporal
reasoning, i.e., how we integrate concepts of time into our problem solving, as
well as spatial reasoning. What we're seeing more and more now are model driven
reasoning systems. Let me give you an example of that. Some neurologists came
along to Pople and said, "We would like to take this system of yours and move it
out of internal medicine, and we'd like it to do diagnosis of neural diseases." Well, 5
it turns out that, although there is a very large set of empirical rules for
diagnosing neural problems, when somebody comes in with a neurological disorder, - '
doctors are much more model-driven by a picture of the underlying neural
network. As a consequence, they decided to solve that problem by building in up
front, a very strong model of the neurological system and to use that as an ...
underlying data base for the diagnostic process. I think the same thing is true .
with applying Al to ATE. A simple set of rules that is collected over time about
the way this particular gear works is only going to provide a superficial solution to
that problem. At some point in time, you're going to see a symptom you haven't
seen before, and at that point you'd better have that underlying model.

We handle uncertainty well, but we don't know how to get machines to
handle uncertainty. We're getting models now, like the Demster-Shafer theories
of accumulating evidence, which give some hints along those directions. Another
big problem is non-monotonicity. People can be working very hard on a problem
and all of a sudden realize that something that was assumed to be true at some
point in the process, isn't true. People will then back up, re-think, and undo all
the incorrect implications that were drawn, but it is difficult (expensive) to get a
machine to do :.kewise.

There are a number of human problem solving abilities that are not
easily captured by Al systems. Without thinking about it, we shift points of view.
We move from an electrical view of this box, to a mechanical view of this box, to
a heat-related view of this box, to a view of how this thing fits into other boxes. .
In contrast, our expert systems right now don't do that very well. They can focus
extensively on one point of view, but they don't move from one to another. The
ability for self-assessment is also difficult. Current expert systems don't do that
very well. The ability to explain and justify is another difficult area.

I don't mean to sound negative. I really think we're in an exciting area .
here, and these are exploitable technologies. I just think that you have to take
that with a sense of caution--with a sense of high risk.

We are seeing rapid advancements in programming languages; the recent
LOOPS development is a very good example of that. We are also seeing
commercially available knowledge representation tools. They're not going to
solve all the problems, but they have the potential of giving you a leg up. The
expert system paradigm I think is a rather clever one; it avoids the broad
problems of common sense in problem solving and focuses on a highly specialized
area.

52

-. . *0

There is a delightful amount of hardware--every time you turn around
there's another product announcement. That's one of the nice things about the
Navy Al Center--we've had an equipment budget to bring in a variety of items
from this emerging technology. Only one caution to that--I don't know who said it
first, but it's been repeated many times, "You can tell the pioneers by the arrows
in their backs." For example, we have both LMI machines and Dolphins in-house.
In both cases there was a considerable time lag between their arrival and their use
by the staff. So, although the hardware is there, be advised that you're on the
front end of that technology, and there will be some pain and grief associated

- with it.

Thank you.

53

S

ABOUT THE AUTHOR

Dr. Kenneth DeJong is an Associate Professor of Computer
Science at the University of Pittsburgh. He has spent the
past 2 years as a visiting scientist at the Navy Artificial
Intelligence Center at NRL. His primary interest is in the
area of adaptive systems design and analysis. He is
currently leading a project at the Navy AI Center in
applying Al technology to the problem of troubleshooting
reasonably general classes of electronic gear.

54

54

An Overview of the Joint Logistics Commanders
Automatic Test Equipment Panel

Paul Gross 0
Naval Electronics Systems Command

S 0 Col. Howard Churchill from the Air Force Systems Command is the
Panel Chairman for the Joint Logistics Commanders Panel on Automatic Testing.
He's unable to be here today. The services in the last 3 or 4 months have had a lot
of bad publicity, specifically in the area of the cost of our spare parts. Col.
Churchill is serving right now on a board to determine some solutions to our

* problems with the cost of spare parts. I'm sure he'd rather be here.

Who are the Joint Logistics Commanders (JLCs) and what is their
function in life? The four commanders are:

* General Donald R. Keith, Commander, Army Materiel
Development and Readiness Command

e Admiral Steven A. White, Chief, Naval Materiel Command

* General James P. Mullins, Comiander, Air Force Logistics
Command

e General Robert T. Marsh, Air Force Systems Command

Why do we have a JLC and why do we have the panel structure?
Basically, what we're trying to do is solve common problems among the services
and share that solution among the services. There are many panels that span a
wide spectrum of common programs, anywhere from depot maintenance
interservicing to metrology and calibration and the area of automatic testing.
Before we get started, I want to say one thing and make it perfectly clear, the
JLC program is not a great big pot of money or a great big program in the true
sense of a program. What we do is take the resources and projects that are
available within the services and try to use the results and benefits and share
them to everyone's advantage. Some of the people who will be talking during the
workshop are part of the automatic testing panel tasks. The work that Tony
Coppola is doing at Rome Air Development Center in testability and the work
that Jerry Kunert is doing are all part of tasks that are defined and described in
our subtask description book.

Figure I shows the JLC organization. The "four stars" are the key
players in the services for developing, acquiring, maintaining, and disposing of
most of the material we buy today in the services. The Panel on Automatic
Testing falls under the heading "Panels" on the chart.

The players in our group are represented by all of the major commands:
the Air Force Logistics Command, the Air Force Systems Command, The Army
Materiel Development and Readiness Command, DARCOM, and Naval Material

55

CC

x CL

JU C)

ccm In
cc)

-'400

=J
0 - l

IM cc

Command. We also interface closely with the people at the National Bureau of
Standards because automatic testing has a very close tie to the measurement
sciences. Measurement is the bottom line, but maybe it won't be if we can get
some Al injected into the program. Associate members of our panel are from
Defense Logistics Agency (DLA) and the Marine Corp..

How do we define the scope of automatic testing? We take a broad
view. It includes the built-in-test and on-line testing that we do on avionics and
shipboard systems. It also includes off-line testing, the special purpose and the
general purpose automatic test equipment which includes our test program sets
and the software for the test stations themselves. There's a very extensive ,
amount of software used to drive these test stations. We're also talking about
testability from the standpoint of defining test point access, partitioning, and the
general approach from which we design our electronics. I shouldn't really point
out only electronics; we're interested in mechanical design, too.

The scope of automatic testing also includes new technology. Our
primary interest here lies within the area of how we test these technologies. How
do we test electro-optics and other emerging technologies? What are we going to
be looking for in the next 5, 10, 15 years in our test requirements?

Let's go through more background on the Panel. From a Navy
perspective, the origins of the Panel started in 1975. The then Assistant
Secretary of the Navy, H. Tyler Marcy, initiated a study group that was worked on
within the Navy, by the fleet, our hardware procurement systems commands, our
laboratories, and a lot of people in our field activities. Basically, what the
resulting report did was to define a series of problems and recommend solutions.

At about the same time, industry, in the form of five major industrial
organizations, became interested in what we were doing with problems. They did
a study for the Navy on our problems in automatic testing and they published a
report. It had many of the same findings that were called out in the Marcy
report. We began to realize that this automatic testing issue and the problems
associated with it were not peculiar to the Navy. The same problems existed in
the Army, the Air Force, and even in industry. At that time we laid the
groundwork for setting up a panel on automatic testing.

In 1978, the Panel was chartered by the Joint Logistics Commanders. At
the same time, the same five industrial groups initiated a joint services study to
examine the problems and to come up with recommendations. In 1979, our study
plan, which basically defined all of the tasking under that panel, was completed
and approved by the JLCs. In 1980, the five major industrial organizations .
published a final report on the industry/joint service test project. Figure 2 lists,
in priority order, the findings and recommendations that came out of that study
panel. I think it's interesting that, if you look at it, you'll see the first two or
three don't have anything to do with automatic testing. They have to do with
management and the way we do business. We haven't done and still don't do a
very good job in developing, acquiring and managing our automatic test systems.
We've laid some groundwork, we've made some progress, but we're still striving to
do a better job.

57

7S

CO
LUJ
cc

Wr LUJ

cc00
CD,

W O M Lm ca - Je

U)L CL LAJ

LU C- LUJ LU

LALA L LUJ LU C

~L UC.3 uU

0 CL -JJ 08 LU

LL CDC

CL LU cm UJ

LU S < _j aU
2

C.3 9 9
I-- d :I-

LU I

LUL

LL. __ CL. C

no M MCC8

d9C LJ LJ cr

"o 70 9

*: Figure 3 shows the current organization of the panel and the areas that
* we are trying to emphasize and consolidate. The people there are the points of
, contact for specific areas. In the policy and procedures area, we're trying to
*" ensure that we manage our systems correctly. We want to be sure that policy is

there to direct that certain techniques be used and that program managers are 0
aware of their requirements in the acquisition of automatic testing for support of
prime systems.

In the last 2 years, a lot of emphasis has been placed on standardizing
test program languages. Right now, DoD is in the process of issuing 5000.31,
which is applicable to Mission Critical Software. 5000.31 will be upgraded from a
DoD directive to a DoD instruction. Basically, it calls for the use of ADA for
mission critical equipment and also specifies special purpose languages such as
ATLAS. We in the services have agreed to standardize on Common/ATLAS which
is a pure subset of IEEE Standard-416-ATLAS.

We're also working to develop techniques and analysis tools to help us W
make tradeoffs in the testability area, and we're trying to assess the technology
requirements for the future. We're tracking various technologies and trying to
predict what the requirements will be for testing that technology.

I'm sure quite a few of you are familiar with the programs that each one
of the services has in off-line ATE. The Air Force has the Modularized
Automatic Test Equipment (MATE) program. It has established an acquisition
process for acquiring and supporting automatic testing assets in the Air Force by
standardizing interfaces and architecture. In the Navy we have the Consolidated
Support System (CSS). What we're trying to do there is increase the productivity
and through-put within intermediate maintenance and shore intermediate p
maintenance activities. We're placing a lot of emphasis on the reconfigurability
of assets and resources and on modeling to better manage and utilize our assets at
the intermediate maintenance level. The Army has the Direct Support-Automatic
Test Support System, and the Marine Corps has their own program also.

The purpose of this group is to communicate what everyone is doing, P..
share areas of common interest, share what's been developed, and transition that
information to the other services. We don't want to reinvent the wheel. A lot of
good work has come out of the Air Force MATE program, and there's going to be a
lot come out of the CSS program in the Navy. We're trying to ensure that the
communication lines are open, there's a free flow of information, a dialogue
between the key players in the services and in industry. _

Machinery testing is a disaster area, to say the least. This area offers
the greatest potential for cost saving. If we can coordinate the efforts in the
services, we won't squander our limited resources. There's little interest in
putting R&D dollars in this area, but it has tremendous potential. It's not sexy I
guess because it's not electronics. Ultimately, however, you're going to have to
put some electronics in it to get the information out.

Let's take a look at the nature of the problem. When I was asked to give
this presentation, I was asked to discuss some of the problems we're facing and

59

LL, 0*

o

o o

-
00

z =1J
cc o

U2=

U..

CLu

"3 d4

I- LI--

ul U)

ccc.
(0 ZLLC.wi C.' LL

0'

0.0.

60

some of the areas where Al might be able to help us solve our problems.
Basically, I think the waterfront is wide open. There are a lot of problems out
there and a lot of areas where expert systems, knowledge-based systems, and
other techniques can be used to help us solve our problems. Let's imagine a
technician sitting in the middle of the Indian Ocean, standing watch and
operating the surface search radar which is one of the critical systems on a ship.
He knows where he is and who else is around and doesn't want to run into other
people. He may be on the night watch, and playing pinochle with a couple of
buddies, and all of a sudden, about midnight or I:0 a.m., every amber light on the
power panel lights up and someone says, "Holy cow, what's going on?" They've
gone into a hard down situation. What does the technician do? Immediately, he a
picks up the maintenance manual, which is 9 inches thick and weighs about 15
pounds. He picks up about 7 or 8 pieces of general purpose electronic test
equipment, walks over to the panel, starts playing with the built-in test, and goes
through a routine of trying to fault isolate and detect what's wrong with that
machine. Ultimately, if he's lucky, in a few minutes he fault isolates to an
ambiguity group. Usually not a few minutes; believe me, sometimes it can be l
several hours. In the meantime, the CO of the ship is saying, "What the heck is
wrong with my surface search radar? You took my eyes away." This poor
technician is working with the tools we've given him which are, at best, barely
adequate. If he's a smart tech or a super tech (and we do have some excellent
technicians out there, believe me), he pulls out a little black book. If this thing
has happened before, then he's got some information on it and he can go ahead and .
maybe solve the problem. If not, he's got a real problem. He's got to call the
supply officer and say, "Hey, Mr. Porkchop, do you have 7 or 8 or 9 modules,"
whatever the ambiguity group is. "I need to replace them." If he's lucky, he
might have what's called a maintenance assist module. This allows him to take a
"golden module" and start "easter egging" by random trial and error to get down
to a faulty card, or reduce that fault group to a smaller number. .

In our example we'll say he's lucky and they have all the spares on board
to solve this specific problem. So he pulls the specific module out, replaces it,
runs through an operational test, and he's back on-line.

Well, what happens to the module? Right now, if we're talking about the
surface Navy, they go back to either a shipyard or a contractor. That can be
disastrous in some instances. If that was the only spare on the ship, you probably
won't see another spare back on the ship for 4 or 5 months. In the meantime,
you're probably going to experience a failure. So, if you're lucky, you have some
capability on the ship to repair these modules. They are sent to the technician
who starts running them on the ATE. The technician runs through all eight or nine
modules and says, "Hey, I got two bad modules." The other ones are put back into
the supply system as ready for issue and two modules must be tested. What's
happened here is that we've lost a bit of information. There's been information
from interrogating and isolating those modules that we haven't transferred to that
technician. This technician now runs into the same problem that the person
taking it out of the prime system does. It gets put on a piece of automatic test
equipment, gets run through a test program set and a diagnostic procedure, and lo
and behold the technician gets it down to two, three, maybe four devices. Unless
there is an intelligent probe or some other technique, we're dead in the water. So
all the chips get replaced. Well, I think that the example speaks for itself. We've

61

I-

p
got a real problem here, and it's not an easy problem to solve. I think we can do a
better job. When you start thinking about what's coming down the line in the next
4 or 5 years, we're going to start inserting VHSIC. It introduces a lot of problems
that require an upfront look, particularly in the area of testability. p

So what is the nature of the problem? In the past we've failed to
identify the maintenance requirements. We need to take a hard look at what
we're doing, need to improve the reliability, need to improve the maintainability,
and need to ensure that testability is in the design.

There's also a disparity between the maintenance requirements and the
maintenance resources. We need to do a better job up front to make sure that
these systems are testable and that the test systems are put out in the fleet on
time. Pve heard a lot of discussion this morning about not having the smart
people out there with the skills. We need to train them and to maintain their
skills. They're out there working on prime equiment and may not see the same
problem week after week. Still, they have to maintain their proficiency.

It's also important to capture the information available from our
supertechs. We need to have some way of pulling that information and getting it
into a data base so we can reference it for later use.

Automatic testing is essential. You're just not going to get out there
* with general purpose manual test equipment and test these systems. Automatic

. testing is your only saving grace, and I think it's going to be more so in the coming
years as technology advances.

Testing technology must not lag behind the technology we're putting in
the prime system. We can't take a laboratory tester and put it out in the field; it

* doesn't work. When we're developing the system, we need to ensure that the test
system will work in the field.

Finally, to catch your eye, we're spending about $3 billion annually on
automatic testing; that's acquisition, ownership, hardware, software, and R&D.
That's probably a conservative estimate, and it's a major expenditure that
shouldn't be taken lightly.

One of our objectives in this program is to reduce proliferation and our
dependence on off-line test equipment. When I first went to work for the Navy,
the Naval Material Command, we'd just published an inventory. We had 280 0
unique pieces of ATE. One of the things we'd like to do in this area is embed
more of the support in the avionics and electronics. We want to do this
intelligently, not blindly.

Next, we really need to do a good job of applying management to
acquiring automatic testing support and automatic testing systems to support our
prime systems. We're making improvements in this area, but I don't think we've

* gone far enough. We have to use the tools available; the acquisition guides and
policies should be followed more closely.

62

Third, we're trying to enhance the readiness of the weapons and the test
systems. Remember, if the weapons system is down and your test system is down,
you're down all over. There's no way you're going to fix it if your test system is
down. We want to get the testability requirements up front in the acquisition
process to ensure that we do an intelligent job. This testability should also be put 0
in from the perspective of cost effectiveness.

A fourth objective is to improve communication, not only within the DoD
and within the government, but with industry. We're spending a lot of money on
R&D (Pm sure a lot of you think it's not enough money, and I agree) but we'd be
foolish to duplicate what everyone is doing. We want to cut out redundancy. .
Communication can and has had a big payoff.

One of my biggest kicks is parochialism. We're very parochial in the
Navy, and I think we have to overcome that. The "not invented here" syndrome is
not acceptable in today's environment.

Next, we need to improve productivity and quality through more
effective application of automatic testing technology. We need to grasp that
technology and put it into our support systems and our automatic test systems.
We're doing an awful job of transitioning the R&D out of the tech base. Two or 3
years ago we had two demonstration programs that weren't producing hardware.
But they allowed us to develop, prove, and standardize a system to communicate
information between various sytems on the ship. This improved communication
among the CO, and the work centers on the ship and provided readiness
information at the fingertips of the CO. That wasn't a high burner and it didn't
win too many awards. It got cancelled at the Congressional level.

A sixth objective is to ensure the development, transition, and
application of advancing testing technology to the solution of testing problems.
Basically, we're saying one should use the technology that's there in the tech base.
I don't think we've done that to the greatest extent possible.

Lastly, an objective is to enhance standardization of service automatic
testing programs, including the development of appropriate standards and
specifications. Standardization should be practical and sensible. We don't want to
lock up technology or stop innovation.

Now I'd like to review some of the accomplishments of the JLC Panel.

-- We've developed an automatic testing acquisition planning
guide. This is a cookbook for the acquisition manager that
explains what he should be doing in acquiring an automatic
testing system when he buys his prime system. It discusses
primarily off-line test systems.

IL The panel has also developed a how-to guide for the
built-in test area. It addresses getting the requirements
into the contracts, defining the requirements, and provides
engineering information, techniques, and practices to put
built-in test in your system.

63

* We've developed an informational guide to provide a
synopsis of many of the digital test generation systems on
the market.

Another handy tool is the weapon system acquisition S
review guidelines. It can be used by both the program
manager and the person reviewing an acquisition program.
It includes questions that program managers should be
asking themselves while going through the acquisition
process.

* We've also developed a reference guide of existing
automatic testing information systems as part of our
communications and education effort. There are a couple
of data bases included: the Air Force has a lessons learned
data base that a lot of people in the Navy didn't know
about, and the Navy has a test technology information S
center where someone is on call to answer any and all
questions in testing technology.

* The Sensor Handbook for Automatic Test Monitoring and
Diagnostic Systems Applications to Military Vehicles and
Machinery describes available sensors and state-of-the-art
information on sensors used to monitor machinery systems.
This was some very good work done for the Army by the
National Bureau of Standards.

9 Cross fertilization efforts started back in the Navy in .. _
about 1978 when we issued a newsletter to set up a means
of communicating within the automatic testing community.
This publication is open to anyone in industry and the
services. If you'd like to be on the mailing list, write to:
Betty Sponaugle, Editor, Naval Electronic Systems
Command, ELEX 08TA, Washington, DC 20363.

A number of other projects are underway. Each one of the services has
its own way of doing test requirements documents. We're trying to come up with
a joint way of ordering test requirement data. This effort has taken about 2 years
so far. Hopefully, next year we'll get a standard out on the street that everyone
has agreed to and that addresses everyone's requirements. If we succeed, it's
going to reduce the number of standards out there.

Something else we've been anxiously awaiting for the last 2 years is the
issuance of a standard on testability. This standard was originally issued back in
May 1983 for comment. All the comments are back from industry and the
services; they're being integrated, and hopefully we'll have another version by
February 1984. The approved version should be out by May 1984. When this
happens, we can include requirements in our contracts to start incorporating
testability in our systems. The standard was written to parallel the LSA standard,
Mil-Std-1388, and it's got a direct interface. We've had some negative comments
that pointed out that this should be system design oriented, so we have to wor!<
those problems out.

64

*i

S.-... .

Other things we're doing in the testability area, a lot of which is coming
out of the MATE project, are developing a testability design guide and a
testability analysis handbook. These products, which we expect sometime before
the end of the calendar year, will be applied across the services.

In the area of training, the panel sponsors two courses. One is on
automatic testing acquisition management, and the other is a design for
testability course. This is a 3-day course that addresses both management and
design issues. Both have been taken all over the services and were well received.
In industry, training has been sponsored by the National Security Industrial
Association Automatic Testing Committee.

The panel has also gotten testability incorporated into the Defense
Systems Management College curriculum. At the moment, we're developing a
Common ATLAS course using IEEE Standard 716.

One other thing I want to bring up in terms of these accomplishments is
that the Test Technology Office, which is located at the Naval Oceans Systems
Center in San Diego, published a joint service assessment of testing technology.
In this document, they have tried to focus R&D planning on developing testing
technology to meet the emerging technology requirements in weapons systems.

For the future, we're going to keep doing what we've been doing. The
question we always get when we go up to the JLC is "When is this panel going
away?" Well, we'd like to go away in about 3 or 4 years. We don't know.
Hopefully, we'll have a lot of the problems well in hand. What we'd like to do in
the future is continue to have a good dialogue with industry, particularly to
interface closely with the National Security Industrial Association Automatic Test
Committee. We've had joint meetings. Let's face it, the services don't put
hardware and weapons systems out in the field--it's really industry. So a lot of
the knowledge in this area is in industry, and we would be remiss if we didn't try
to tap it. Other future objectives include expanding training activities,
implementing design for testability, developing the integrated diagnostics
concept, and focusing on new technology, such as artificial intelligence. W

About 2 years ago, the Air Force came out with a policy on integrated
diagnostics. Some good things have resulted. You may or may not agree with the
definition. Whether or not we achieve our objective depends on our ability to
implement some of the things you're doing in Al. I see integrated diagnostics as
doing business the way we ought to do business. We need a strategy to integrate
these different test disciplines.

I also see integrated diagnostics as a useful tool to you. It may be a
technique to insert Al into automatic testing. Some good news: the Air Force is
in the process, at Aeronautical Systems Division (ASD), of establishing an
integrated diagnostics Special Projects Office (SPO).

ILL
What do I envision for the JLC Panel? More emphasis on integrated

diagnostics. You'll also see some tasking in the area of Al. We've already got one
subtask described; it'3 a monitor task to see what we're doing in A[. We're going
to make some inroads to apply Al to our automatic test systems and to solve some
of our diagnostic problems.

Thank you.
65

ABOUT THE AUTHOR

Mr. Paul Gross is Technical Director of the Test and
Monitoring Systems (TAMS) Program Office at the Naval
Electronic Systems Command. He is also the Navy's panel
member on the 3LC Panel on Automatic Testing. In
previous positions, Mr. Gross has served as a maintenance
engineer on the F/A-I8's F404 engine program and was
responsible for overseeing the development of maintenance
plans.

\' 0

66

II .o .

- .. 1

0

Overview of Training and Aiding

5%. Dr. Henry Halff
Office of Naval Research

Introduction

o As wit h most--Go-f he-presentations that I give, my- rema&ks today will be
determined mo'e by my own current activities than by the guidance given me to
prepare for this talk. Since I am a research psychologist working in the Personnel
and Training Research Group at the Office of Naval Research, I will, therefore,
be talking about'the role that people play in maintaining systems and about
psychological research which addresses that role. .I believe that people will
continue to play an important role in maintenance in the indefinite future. I
realize that many of you in the audience do not share this belief and feel that
people can be totally removed from the maintenance process (Coppola, this
volume). Those of you whose sole interest is in peopleless maintenance should
feel free to indulge in a half hour's nap. I must also beg the indulgence of pebple
here who are not particularly concerned with the Navy. Since I work for the
Navy, you may find that my remarks have a rather salty tang.

Two serendipitous events make this talk a good deal more enjoyable for .
me than I had thought it would be. First, in reviewing the presentations that
follow my own today, I find that I will conform reasonably well to my instructions
to prepare an overview of these talks, even though I totally ignored those
instructions and simply put together a few opinions of my own for this
presentation. Second, I had really planned on bringing out a few important facts
about maintenance and then drawing some conclusions from those facts. The
facts, fortuitously enough, were all revealed in yesterday's presentations, leaving
me free to devote the rest of my time to the conclusions.

Let me begin with a summary of those conclusions--sources of
maintenance problems in the military are widespread and their manifestations are
widespread. Not all of the problems originate at the workbench and not all of the
problems are seen on the workbench. Solutions, therefore, must be sought at a
number of difference points and a concentration of effort on a single point, such
as expert systems as troubleshooting aids, are bound to have a small or even
negative impact.

The Military Problem

Sources

Much of what I have to say about sources of maintenance problems in the
military was discussed yesterday by McGrath (this volume). We expect serious
declines in the labor pool. In 1978, the prime recruit population, 17 year old
males and females, numbered 4.25 million. In 1990, it will number less than 3.25
million.

67

Mental quality of this population, as I am sure you are aware, declined
seriously in the late 1970s and has not significantly improved since then.
According to a recent Navy study, the median Navy recruit reads at about a 10th
grade level, and the average training and technical manuals are only readable at a
10th grade level. This means that the average technical manual is readable by
only half of the personnel required to read it.

These problems are compounded by a problem not yet mentioned,
namely, growth in the force. The Navy, for example, is expanding from a fleet of
a little over 400 ships to one of about 600 ships. Although these figures should be
taken with a grain of salt, it is clear to everyone that there will be more
equipment to maintain and, therefore, a higher demand for maintenance lip
personnel.

Finally, as was mentioned several times, military systems and hardware
are becoming more complex. There are many ways of presenting data to
illustrate this phenomena, but Figure 1 is one of my favorites. It plots the number
of pages in the technical manuals for Navy aircraft as a function of time. It is
easy to note that, starting in about 1950, the curve becomes quite steep. Nor
should it escape your attention that the ordinate (manual size) is on a logarithmic
scale so that technical manual size can be seen to double about every 10 years.

FRAMES/PACES

300.000
VFAX

2 .=NO.= J*. D:7 ~~~2S50,00, . ..

F-14

MONUDE I -

~~~~~225,000 3500TMA
2m0600 F-4

PHANTOM
150.000 

1..0

INTRUDER

15.000TRCE
" 1S.000 F

GOE 950 F -$F COUGAR

toF-6F BEARCAT
HELLCAT I

1939 1942 194& Ilia 19S3 1089 19 1971 I 1i0

Figure I. Technical Manual Growth Rate Within *0

the Naval Air Systems Command.

68



Manifestations

One of the most devastating effects of these problems is on the
resources available for training. I have noted the shortage of skilled personnel, a
shortage compounded, by the way, by extremely attractive offers from industries
competing with the Na-'y for those personnel. In addition to personnel shortages,
the services with grovth in the force experience equipment shortages. Both the
training community and the operational forces have needs for people and
equipment and in the competition for these resources, the operational forces
should, and do, win. We, therefore, find our technicians being trained on obsolete
equipment by overworked instructors with a subsequent decline in training
effectiveness.

It is also possible to see manifestations of the maintenance problem in
the fleet and field. (If this were not so, I don't suppose we would be here today.)
For example, as Figure 2 shows, the ratio of maintenance hours per flight hour on
Navy aircraft increased by about 61 percent between 1974 and 1980. Currently,
an aircraft spends 30 hours in the shop for every hour that it flies.

Artificial Intelligence and Maintenance

We are here today because we all think that artificial intelligence (Al)
holds some promise for alleviating the problems I have just discussed. The natural
and perhaps dominant view of this promise was well expressed yesterday by
Coppola (this volume), who suggested that a combination of Al and robotics could
totally automate the maintenance process. That is not the view that I wish to
convey today. Instead, I suggest that we seriously consider how artificial
intelligence can alleviate some of the problems associated with the performance
of maintainers.

Training of Maintainers

Basic skills. As I have mentioned, problems with maintenance in the
" services do not seem to arise at the workbench, but rather, in a sense, in the

public schools. Our recruit pool is inadequately prepared to deal with both
technical training and the demands of maintenance jobs. Although the application
of artificial intelligence to this problem is difficult to see at first, it is worth
pointing out that some of the most exciting work in education today uses Al
techniques to model knowledge and processes normally associated with basic
skills. Most of this work (e.g., Greeno, 1978, 1980; Lewis, 1981; Resnick, 1982;
VanLehn, 1983) is concerned with the kinds of computational skills that are
crucial to success in technical training.

Appropriate remediation of basic skill deficiencies can, at the least,
increase success rates in technical training and thereby increase the supply of

- qualified maintainers (Baker & Hamovitch, 1983). Al offers a number of tools
that may be helpful in the remediation of basic skills. Dealing with individuals
who lack basic skills even after years of instruction is a much more complex

69
j'



00

00

ulS

uS

EL

CIl

700



EUHE U--, .- ~- - ~ --
U .- o .---- P L-

problem than that of initial acquisition. There are suggestions in current research
that skill deficiencies are complex and subtle enough in origin that a computer
will be required for successful diagnosis and remediation.

Simulation. The use of simulators for maintenance training is not a new
" idea and is one that ostensibly has nothing to do with AL. However, AI and

associated developments in computer science are leading to a different view of
the role and potential of simulation in technical training. To a large extent, this
new view has developed as the consequence of STEAMER which Hollan will
describe in more detail later. The general trend that I see in simulator design
philosophy is one that loads us away from physical fidelity as a criterion towards -
designs based on the cognitive aspects of the skills to be mastered. Current
research in cognitive science (Chi, Feltovich, & Glaser, 1981; Lesgold, Feltovich,
Glaser & Wang, 1981) indicates that experts in technical fields view problems in
their domains in terms of abstract entities and principles that are not
immediately evident from the physical characteristics of the problem. This
abstraction not only serves to encapsulate strategic problem solving knowledge
(Greeno, 1978, 1980), but also provides the memory structures for expansion of
the cognitive resources needed in successful problem solving (Chase & Ericsson,
1982). It follows that simulators might well function more effectively if they
incorporated explicit representations of abstract entities and provided views of
the domain that promoted the development of the knowledge structures needed -
for effective problem solving.

Within Al the research most relevant to conceptual simulators is that
. concerned with mental models and qualitative reasoning. Thus, I expect that
. theories of envisioning (de Kleer & Brown, 1981, 1983) will have a considerable

impact on this field. In addition, simulators can be viewed as analogies of the
target training domain so that theories such as structure mapping (Gentner, 1983)
may also apply. There is some indication that schema theory may be a useful tool
for describing system perception and device perception (Kieras, 1982). Simulators
that make evident the schematic nature of the devices being simulated may,
therefore, offer a singular advantage in training. Finally, the notion of
qualitative interfaces (a term coined by Jim Hollan), in which abstract quantities
(e.g., acceleration, current) are given concrete realizations via icons, may provide
excellent ways of training students to think effectively about systems.

Intelligent computer-assisted instruction (ICAI). The use of computers
to capture an instructor's expertise and thereby extend his or her instructional
powers in both space and time is not new (Carbonnel, 1970). Artificial

- intelligence is involved in this enterprise because the subject matter in any
significant domain requires intelligence and since teaching itself is an inherently
intelligent activity. But years of research pursuing the dream of a fully
automated tutor have taught us that computerizing expertise for instructional
purposes is far more difficult than capturing expertise for, say, advisory purposes.
This is so because successful ICAI must not only be grounded on a computational
understanding of the subject matter, but also on a computational model of the
student and of instructional methods. Good teachers teach to a mental model of
their student, and the complexity and subtlety of this model continues to
challenge researchers in this area (London & Clancey, 1982).

71

I .•



Although the idea of a fully automated tutor remains an elusive end-
point in a continuum of computer-based training systems, it is possible to use
artificial intelligence devices in a number of other ways in technical training.
Wescourt (1977), for example, and more recently VanLehn (1983) have made
suggestions relevant to the sequencing of exercises and examples. Brown (1983)
has pointed out that the availability of advice when needed is as crucial as the
quality of that advice. Following Burton and Brown (1982), he suggests a family
of minimally intelligent computer coaches that operate in a carefully designed
environment for exercising technical skills. In mimicking real world situations,
these environments constitute simulators, but not ones that we normally associate
with maintenance training.

Development of instructional materials. Finally, there is a prospect for
the use of artificial intelligence in the development of instructional materials,
particularly in view of the large literature on computational linguistics and
machine models of learning. Much could be done to improve training documents
and written materials, and a bit later I will discuss some of these possibilities in
connection with technical documentation. For now, let me mention that other
opportunities exist in the area of curriculum design. One possibility, for example,
is to use computer models of learning to evaluate curricula. Another is for
automation of the process of curriculum design or at least curriculum revision.
Both of these technologies could involve an interesting combination of cognitive
modeling and Al technology. I should note in passing that the average Navy
course is revised on the order of once every 133 years, so that this area is also
ripe for automation.

Design for Maintainability

There are other areas where artificial intelligence can help with a
maintenance problem. We have heard quite a bit of evidence that systems are too
complex to be effectively maintained. It is possible that Al could help us
decrease the psychological complexity of devices and thereby make their
maintenance more feasible.

Knowledge representation and structured design. Kieras (this volume) is
going to tell us about research that I just alluded to in my mention of schema
theory as a basis for system perception and comprehension. We may well be able
to incorporate these schema theoretic accounts, which address the psychological
or mental aspects of device representation, into the desiga process.

The software-engineering community has for some time now been
concerned with the design of more maintainable software. In fact, the discipline
of structured programming is rigidly applied in software development expressly
for the purpose of enhancing its maintainability. Despite one's views on the
effectiveness of this discipline it would be difficult to argue that its
implementation has failed. Hardware design has been little affected by similar
considerations, perhaps because software is inherently symbolic and, therefore,
more amenable to cognitive analysis. Nonetheless, there may be important
opportunities in the future for Al to guide the design of hardware for the specific
purpose of improving its maintainability.

72

, S, "-~"''



Cognitive models of maintenance performance. Apart from top-down
approaches to design, I think cognitive modeling offers some promise in the area
of design for maintainability. At least the topic gives me the excuse to talk about
some research. Since ONR does not let me do any research on my own, I am
forced, in situations like this, to talk about other people's research. Today I have 0
chosen Towne (this volume) to misrepresent. He developed a simple but effective
computer model of how people troubleshoot a microcomputer system down to the
functional device level. The model, shown in Figure 3, is based on the kinds of
widely known principles that have been discussed at this workshop. The
technician modeled by Towne has available to him a collection of tests and a
collection of replacement units. In selecting any action, either a test or a
replacement action, the technician considers the information value of the
particular tests and the certainty associated with any particular decision to
replace. The model operates in an iterative fashion. Hence, it tends to first
perform the most useful tests, and when it is reasonably certain that a unit is bad,
it replaces that unit.

The model is a far cry from some of the more complex efforts at
cognitive modeling of diagnostic behavior; nonetheless, it is surprisingly accurate,
as Figure 4 shows. This figure is a scatterplot of test-and-replace times for nine
different faulLs. The model's performance, averaged across reasonable minor
variations in strategy, is plotted against the average peformance of real

. technicians. The times for individual test and replacement actions were
precalibrated so that any points off the main diagonal indicate a discrepancy
between the model and real technicians in their choice of tests and replacements.
With no parameters to estimate, the fit of the model is virtually flawless. More
importantly, it gives a clear indication of the faults that cause maintainability
problems. Tools of this sort in the hands of designers could be a powerful means " "
of ensuring that equipment is designed to be easily maintained.

Documentation

Print media. There is near universal agreement that technical
documentation is, for the most part, grossly inadequate and often totally useless.
Al's large concern with linguistic matters should provide considerable leverage on

. this problem. One immediate way to improve documentation might be to derive
guidelines for authors using currently available knowledge in psycholinguistics and
computational linguistics. I tend to doubt that this approach would have much of
an effect since guidelines simple enough for a writer to apply consistently would
probably be too weak and imprecise to have much of an effect.

Another more promising approach is to use automated authoring aids to
help writers improve technical documentation. Systems such as the Writers'
Workbench (Cherry, 1982; MacDonald, Frase, Gingrich, & Keenan, 1982), and the
Navy's Computerized Readability Editing System (Braby & Kincaid, 1981-1982;
Kincaid, Aagard, O'Hara, & Cottrell, 1981) are a good start in this direction, but
these systems for the most part address mainly the surface aspects of. text. That

- is, they provide critiques of vocabulary, sentence length, use of awkward phrases,
etc. without really addressing the meaning or structure of the text. Later today
Kieras (this volume) will discuss Al-based methods for examining more
fundamental aspects of text. One notion that he will describe involves the use of

73



START

is 0

DONE DSAC

NO9

COMPUTE~

VALUS OFALL ORNA N-

TESFgur 3.EUL
40T PRVIOUS

'01'IPUT VALE PRFOR



m 5000

2550 
0

+75.



an Al-based parser that can provide a structural description of the text and rules
that operate on that structure. Automated analysis of the semantic aspects of
draft technical documentation is more challenging, but it might be possible to run
certain checks for semantic completeness or to simulate readers and analyze what
they might comprehend in the text. 0

Eventually, we should aim for top-down guidance at the discourse level.
That is, we should be able to analyze the overall purpose of a document or set of
documents and make recommendations about the discourse structures that should
be used to convey the target material.

Interactive media. Al can also help in the design of computer-based
performance aids. One possible role for such devices is simply to deliver
technical data in a more convenient fashion than standard print media. Another
role is to provide state information on the equipment being maintained. The use
of automatic test equipment is particularly pertinent to this aspect of a
performance aid's function. These aids could also serve to deliver procedural 1
instructions interactively in a way that would lead to fewer errors in performance
and the ability to incorporate more complex and sophisticated procedures into
maintenance.

In all of these uses, Al could play a role. It could provide natural
language interfaces, inference mechanisms for ATE, and knowledge P
representation methods for procedures. There is one other role that Al might
have in a computer-based job aid, namely that of giving advice to a technician
through an expert system. Strangely enough, it is this role, the use of expert
systems in diagnostic maintenance, that seems to dominate this meeting. To
understand the role of AI in maintenance, we must first recognize that diagnostic
results are only one form of information useful to a technician repairing a system,
and that delivery of information is only one aspect of the maintenance problem.

Al in the Real World of Maintenance

A narrow view of Al's role in maintenance is bound to lead to serious
problems in the real world. I do not claim any real expertise about the real world,
but my few reluctant sojourns there have given some cause for concern about the
application of this technology.

Robustness. It is well known that typical, unstructured rule-based
systems are not very robust. An expert system carefully designed for one O
application may be totally useless when applied to even a close cousin.
Unfortunately, minor, and sometimes major, changes in configuration are the rule
in the real world rather than the exception. One source of such problems is
configuration failure. A technician who does not have the replacement parts
necessary to properly repair a device uses a jerry-rig to make the unit work. A
data processing technician on finding a bug in a ship's software, installs an
unauthorized patch that, over the life span of the software, drives it ever further

; away from configuration. Who, if anyone, bothers to inform the expert system
that troubleshoots these devices about these sub rosa changes? Even authorized
changes, say, as the result of overhauls, may have difficulty finding their way into
maintenance aiding systems.

76



Another aspect of the robustness problem was mentioned yesterday by
Mr. McGrath. Faults, it appears, come in two sizes: the kind that are fixed
almost immediately and the kind that can take from 10 to 100 hours to fix.
Technicians' experience and expert knowledge are probably most effectively
brought to bear on the former type of fault. The latter, more difficult faults may 0
well require advanced reasoning and inference capabilities not found in the kinds
of expert systems described yesterday.

Maintenance objectives. Multiple goals are characteristic of most of the
people working in a maintenance environment. The primary goal of the typical
technician is that of keeping himself or herself unhurt and alive. This kind of .0
overriding contextual information is difficult to incorporate into an expert system
decision aid; the tests and procedures that make sense in good weather, for
example, might be completely unacceptable during a squall. Operational
readiness is also a primary goal of maintainers. Keeping ships and other systems
operational will often preclude maintenance actions deemed to be crucial from
the narrow viewpoint of an expert system. Repair is often a goal that supercedes .
diagnosis, and maintenance systems must, therefore, be able to decide just how
precise a diagnosis must be before a repair should be effected. Political and
policy factors also figure heavily in the goals of a maintainer; the attitudes of
managers may often determine false replacement rates and other properties of a
maintenance operation. Thus, while troubleshooting and diagnosis remain an -
important problem in maintenance systems, they are far from primary goals and,
in fact, lie at the tip of a very complex goal tree. 7

Other factors. Other noncerebral factors also work to limit the
usefulness of expert systems and job aids. Many of the systems that are most
difficult to troubleshoot are widely distributed. Radar systems and
communications systems, for example, are distributed across the entire extent of
a ship, and a single fault often requires three or four people to track it down. The
idea that an expert system has to be a team player is not one that I see widely
discussed in the literature.

Accessibility is another problem in the maintenance of many systems.
Components that are accessible in some situations may not be in others. Hence,
an expert system that demands access to these components may have to deal with
ubiquitous and unpredictable physical constraints.

As Mr. McGrath mentioned yesterday, logistics is a large, complicating
factor in maintenance systems. At or.e !evel, technicians are directed to repair
systems on a modular basis, replacing a known bad module with a replacement S
module. When, however, these modules cost in the tens of thousands of dollars, it
is often difficult to obtain replacement parts. Technicians more interested in
readiness than in policy will often retain faulty modules as component caches.
Designing maintenance aids that support or fail to support this kind of antipolicy
behavior is an interesting problem.

7-
77-'

S!

* *-'- .



Conclusions

The purpose of this workshop is to determine the course of research and
development on Al in maintenance. Let me conclude, therefore, with
recommendations oriented towards the planning of research and development.

Concerning the substance of research in the area, I think it essential that
we be eclectic. I am disturbed that the typical view of Al applications to
maintenance is one of an expert system that operates on the workbench to
diagnose failures, aided or unaided by technicians. I hope that the considerations I
have just discussed force us to consider a much broader attack on the problem and .0
to consider applying Al at all levels from system design through documentation,
training, and all aspects of performance aiding. Broadening our approach can only
make it better integrated, more robust, and more successful in the long run.

Also worth recalling is DeJong's (this volume) point about the scientific
status of expert systems. There remain serious unanswered scientific questions ,•
about this technology. I would not be at all surprised if the field of expert
systems, like that of machine translation, became essentially dead in 5 or 10
years. Needed much more than the development of yet another expert system to
troubleshoot a particular device is basic research on the hard scientific problems
associated with expert systems.

One important barrier to the prosecution of essential research in Al is a
shortage of expertise in the field. Industry does itself no favors by hiring
individual graduates, each to start his or her own Al shop to build one more expert
system. Companies that engage in this sort of practice usually do so with plans to
expand their one-person shops as soon as experts become available. They seem to
care little that they are withdrawing from the academic community the very
resources needed to produce those experts or that they are fractionating the
scientific community to the extent that serious and important research on Al may
well become impossible.

In sum, if we cannot find the breadth of view to look for innovative
approaches to solving maintenance problems at all levels, or if we cannot find the S
discipline to support the serious scientific work needed to create a proper
foundation for Al, we will be rewarded with the attendant loss not only of
resources but also of credibility to those who furnish those resources.

78



References

Baker, M., & Hamovitch, M. (1983). Job-oriented basic skills (JOBS) training
program: An evaluation (NPRDC Tech. Rep. 83-5). San Diego, CA: Navy i
Personnel Research and Development Center.

Braby, R., & Kincaid, J. P. (1981-82). Computer aided authoring and editing.
Journal of Eductional Technology Systems 10(2).

Brown, J. S. (1983). Learning by doing revisited for electronic learning
environments. In M. A. White (Ed.), The future of electronic learning.
Hillsdale, NJ: Erlbaum.

Burton, R. R., & Brown, J. S. (1982). An investigation of computer coaching for
informal learning activities. In Sleeman, D., & Brown, 3. S. (Eds.), Intelligent
tutoring systems. London: Academic Press.

Carbonnel J. (1970). Al in CAI: An artificial intelligence approach to
computer-assisted instruction. IEEE Transactions on Man-Machine Systems,
MMS-1l(0).

Chase, W. G., & Ericsson, K. A. (1982). Skill and working memory. In G. Bower -
(Ed.), The psychology of learning and motivation (Vol. 16). New York:
Academic Press.

Cherry, L. (1982). Writing tools. IEEE Transactions on Communications, 30,
100-105.

Chi, M. T. H., Feltovich, P., & Glaser, R. (1981). Categorization and
representation of physics problems by experts and novices. Cognitive Science,
5, 121-152.

de Kleer, ., & Brown, J. S. (1981). Mental models of physical mechanisms and
their acquisition. In J. R. Anderson (Ed.), Cognitive skills and their
acquisition. Hillsdale, NJ: Erlbaum.

de Kleer, J., & Brown, J. S. (1983). Assumptions and ambiguities in mechanistic
mental models. In D. Gentner & A. L. Stevens (Eds.), Mental models.
.Hillsdale, NJ: Erlbaum.

Gentner, D. (1983). Structure mapping: A theoretical framework for analogy.
Cognitive Science, 7, 155-170.

Greeno, J. G. (1978). A study of problem solving. In R. Glaser (Ed.), Advances in
instructional psychology (Vol. 1). Hillsdale, NJ: Erlbaum.

Greeno, J. G. (1980). Some examples of cognitive task analysis with instructional
implications. In R. E. Snow, P. A. Federico, & W. E. Montague (Eds.),
Aptitude, learning and instruction: Vol. 2. Cognitive process analyses of
learning and instruction. Hillsdale, NJ: Erlbaum.

79



Jeffries, R., Turner, A. A., Poison, P. G., & Atwood, M. E. (1981). The processes
involved in designing software. In J. R. Anderson (Ed.), Cognitive skills and
their acquisition. Hillsdale, NJ: Erlbaum.

Kieras, D. E. (1982). What people know about electronic devices: A descriptive •
study (Tech. Rep. 12). Tuscon, AZ: University of Arizona, Department of
Psychology.

Kincaid, J. P., Aagard, 3. A., O'Hara, 3. W., & Cottrell, L. K. (1981). Computer
readability editing system. IEEE Transactions on Professional
Communications, 2, 38-41.

Lesgold, A. M., Feltovich, P. 3., Glaser, R., & Wang, Y. (1981). The acquisition
of perceptual diagnostic skill in radiology (Tech. Rep. PDS- ). Pittsburgh, PA:
University of Pittsburgh, Learning Research and Development Center.

Lewis, C. (1981). Skill in algebra. In J. R. Anderson (Ed.), Cognitive skills and
their acquisition. Hillsdale, NJ: Erlbaum.

London, B., & Clancey, W. 3. (1982). Plan recognition strategies for student
modeling: Prediction and description. Proceedings of AAAI-82, 335-338. Palo
Alto: American Association for Artificial Intelligence.

Macdonald, N. H., Frase, L. T., Gingrich, P. S., & Kennan, S. A. (1982). The
writer's workbench: Computer aids for text analysis. IEEE Transactions on
Communications 30, 105-110.

Resnick, L. B. (1982). Syntax and semantics in learning to subtract. In T.
Carpenter, 3. Moser, & T. Romberg (Eds.), Addition and subtraction: A CO
cognitive perspective. Hillsdale, NJ: Erlbaum.

VanLehn, K. (1983). Felicity conditions for human skill acquisition: Validating an
Al-based theory (Tech. Rep. CIS-21). Palo Alto: Xerox Palo Alto Research
Centers.

* Wescourt, K. T., Beard, M., Gould, L., & Barr, A. (1977). Knowled e-based CAI-
CINS for individualized curriculum sequencing (Tech. Rep. No. 290). Stanford,
CA: Stanford University, Institute for Mathematical Studies in the Social
Sciences.

800

* -. * . . -. .. ., -.. . • . -



ABOUT THE AUTHOR

Dr. Henry Half f is a Scientif ic Of ficer in the Personnel and
Training Research Group at the Office of Naval Research.
He is involved with planning, implementation, and
management of basic research programs in cognitive
psychology, computer-assisted instruction and related
areas. Prior to this, he was an Assistant Professor of
psychology at the University of Illinois in Urbana-
Champaign where his research interests were in
mathematical models of learning, choice and decision
theory, and applications of computers in psychology. He
received a Ph.D. in experimental psychology from the
University of Texas in 1969 and was a National Institute of
Mental Health Postdoctoral Fellow at the University of
Michigan. . _

81

0 '



- . .. --- , . - - . .. .. .. . - .I I" -I- .
- .  

7_ -.U.- '--
- .  

"7

Al Approaches to Troubleshooting

0__ Dr. Johan de Kleer
Xerox Palo Alto Research Center

O I would like to point out that this talk represents work done with John
0 Seely Brown Like any good Al expert, I have an enormous pile of slides so I cana. .. dynamically adjust my talk depending on the necessity of the situation. I'm very "

tempted to give a talk today which I won't give, but it involves why Al is bad for* I you. It really is, but this is probably not the right forum for it.

Let mestart with basicsi Why are we here? The single common thread
is that we have-'technological .e4 and they"break faster than we can fix
them. From that keen insight, one can make further observations about the two .0
ways to fix broken machines-you get people to fix them or you get other
machines to fix them. Right now, both of these approaches don't work very well.
Is there a common theory of troubleshooting underlying these two approaches? To
put the question another way: Is the theory of troubleshooting underlying human

* training and human aiding and doing maintenance any different from the theory
underlying computer-based test equipment? The argument is often made that .0
there is a fundamental difference because inference is cheap for computers. This,
however, remains to be seen.

., - _ *

In this talk I'm going to 'takec as an objective getting the best
computer-based troubleshooter we can.r.c What you'll see at the conclusion of my
talk is that, although I never took it as a goal, the design that I come up with is _ _
something that is just right for the training problem.

We know that machines are hard to fix. However, we also notice that
some people are good at fixing them, and we call those people experts. We talk to
those experts for awhile and we discover that they use knowledge about circuits
to diagnose. It takes intelligence to find faults. Now you will notice that any
good data base indexing system would come up with a hit on those three key words
I've just said. What is it? The hit is "artificial intelligence." (This, by the way, is
the beginning of my 45 minute anti-Al talk.) The piece of reasoning I just went
through about expert-knowledge-intelligence being equated with artificial
intelligence is completely fallacious. If it were true, any problem in our society
for which there exist a few experts and which seems to require intelligence would
be placed in the arena of Al. And, by that definition, Al would include everything.
Now I know lots of my friends in Al believe that, but it's completely false. You
may be able to guess the other 44 minutes of what I would say about the dangers
of Al.

Another story I'd like to tell you involves picking someone at random,
say, a knowledge engineer. The knowledge engineer often uses a sledge hammer
to crack a very small nut--a far too large sledge hammer. But perhaps it's a case
of the nut cracking the sledge hammer. The point is that Al is hairy: it's hard,
complicated, and usually doesn't work. Now the problem is that it is also sexy. I
want to drive home a simple piece of engineering methodology that we should all

83



be completely familiar with, but somehow is often forgotten--you don't want to
do the intelligent thing, you want to do the simplest thing that works. If you don't
do that, you're going to get into trouble. I am not in the business of building a -
troubleshooter that's going to work in the field in 2 years, so I have a different
goal than some of you and have to make different kinds of decisions. If I had to
build a troubleshooter to work in 2 years, I would do different things than I am
doing now. The kinds of questions I'm interested in include: What is
troubleshooting? What is the fundamental problem? What does it mean to
understand a machine? Nevertheless, this little piece of methodology that I've
described above applies to the science as well as to the engineering. If I propose a
complex mechanism or artifact, I better have a reason for why I introduced the
complexity. Whether it be engineering or science, do the simplest thing that
works and have an explanation for any complications in the product.

In the rest of this talk, I'm going to get a little more technical and lay
out my perspective on troubleshooting. I'm going to have to do that while I'm ,
going through some examples. I won't go very deep, but I hate talking in
completely high level terms.

Let's consider the regulated power supply circuit shown in Figure 1. I'm
going to talk about six approacthes to troubleshooting using this circuit. Some of
them I have implemented; some cf them are fictional. I'm presenting them to 0
demonstrate the spectrum of possible Ai "nproaches.

First of the six approa.ches to troubleshooting is the modern approach,
which is, I gather from some of the other talks I've heard at this workshop, now
the conservative approach. The second approach is the empirical association
approach. The third approach examines organization of knowledge along
structural and causal lines. Fourth, I'll describe the approach that I consider the
most powerful--how to use deep knowledge about behavior to make
troubleshooting inferences. Fifth, the use of deep knowledge about fault modes,
and sixth, the use of causal models. Causal models is actually a separate talk so I
won't go very deeply into that subject.

As we go through this list of six approaches to troubleshooting, we gain
certain advantages with each successive approach. Thus, if we actually want to
build something soon, we have to take a tradeoff someplace and choose a position

" along the spectrum. The way to view this framework is as a tradeoff of
knowledge vs. inference. There's a disastrous slogan going around that states
"knowledge is power." Actually, we want as little knowledge as possible and we .
want our inference to be as powerful as possible. The basic idea is that if we have
a little knowledge it's easy to change, easy to debug, and takes less effort to make
sure that it's right. So, as I go through these six approaches to troubleshooting,
I'm going to lay out where the knowledge is, how it is used, and what it is good
for.

Let's begin by discussing what a troubleshooter does. Superficially, the
troubleshooter seems to do two things--makes a bunch of measurements, then
replaces a component. It sounds very simple. But note that in the activity of
measuring, the troubleshooter is presumably doing two things. He is making
measurements from which he computes entailments about the components of the
device and based on those entailments, he decides to make yet other

84

-. .



AD-A145 349 ARTIFICIAL INTELLIGENCE IN MARINTENANCE: PROCEEDINGS OF 216
THE JOINT SERVICES..(U) DENVER RESEARCH INST CO JUN 84
AFHRL-TR-84-25 F33615-82-C-813UNLSSIFIED F/G 6/4 NLUNCL 

ASBD 

I~

Smmmmmmhmmmmi



11111 I.80 [65
W2

11111 11-10

111L1.1

MICROCOPY RESOLUTION TEST CHART
NATIOEAL BUREAU Of STANDARDS- I963-A



tit.

000

-4

dw 0

c

%'-

cw

IL4

IL0

A A

85J



measurements. The point is, he wants to make the measurement that has
maximum information gain.

What goals do we have for building a troubleshooter that has
performance? There are four. The first one is robustness. We want the
troubleshooter to succeed on faults that the designer of the system did not
foresee. We do not want unexpected inputs or unexpected faults to blow the
troubleshooting system out of the water. Second, we want it to be general and
work on a wide number of cases. It should be able to apply to other circuits
besides the one for which it was implemented. Third, we want it to be efficient. -.

Anyone can build troubleshooters that make a measurement at every node and .
eventually figure out what is wrong. But measurements are expensive. Some are
more expensive than others, so there is some metric within which a troubleshooter
optimizes. The fourth goal is constructibility. It has to be easy to build the
troubleshooter; if it takes 5 years, then something is wrong.

There is a fifth goal for building a troubleshooter that I have purposely .0
not included on my list--explanation. Explanation is often oversold. The reason
explanation is such an issue for expert systems is that the implementers of expert
systems have to convince the other reseachers in this field, and their own
managers, that these programs work when in actual fact they don't. An
explanation facility provides a means for failing gracefully. It makes the system - ....
appear as if it might work and deflects questions from the real issue which is
performance. If the conclusion of the expert system was always right, or mostly
right, you wouldn't need an explanation, you'd just follow it. And the second point
is, in many contexts, the technician that's using the expert system doesn't have
the technical training to evaluate the explanation that the expert system would
generate anyway. So explanation is oversold in this business.

Let me quickly outline the modern approach, although I'm sure many
people at this workshop have given talks about it. As far as I can tell, the modern
approach is to write 100,000 lines in Pascal code for your million dollar piece of
diagnostic equipment which finds 30 percent of the faults in the device. Let's
evaluate this approach using my four criteria. First of all, look at the knowledge
in the system. The knowledge is al i-plicit in the code. There is no inference .
going on at all. The first problem is that presumably the writer of the Pascal
program went in with a set of faults that had to be covered. How can you tell the
Pascal program actually covered the faults? Secondly, how do you know that the
original set of faults were the faults that were important? So the robustness of
this 100,000 lines of Pascal program is pretty bad. It's also not general at all.
There's no hope this Pascal program is going to work on another circuit.
Regarding efficiency, it seems many of the programs I've heard about are very
inefficient in the sense that they make the same set of measurements no matter
what. I've heard of frustrated technicians who have to wait hours for the program
to reach the test of that part of the modules they suspect is broken. But the
Pascal code doesn't know when to start and when to stop. It just runs through all
of the tests. Our fourth goal of constructibility is obviously poor for the modern _ .

approach.

So how can we do better? Well, we go observe and talk to real-life
troubleshooters. The human expert says things to us that resemble "if-then"

86



relationships. For example, "if the voltage is low, then the constant current
source is open." Aha! These are called empirical associations abstracted from
the expert. So we start writing these empirical associations and they work! So
we collect a very large number of rules. Now, this is a little oversimplified, but
I'd like to point out this simplified system actually works because empirical 0
associations are useful for both of the troubleshooter's basic tasks: computing the
entailments of measurements and proposing new ones.

Suppose the troubleshooter has a rule that says: "If V5 is low, then R9 is
open." The troubleshooter then measures voltage at node 5. Suppose he discovers
that this voltage is low. From that he can deduce by simple antecedent reasoning
that R9 is open. So the rules allow the troubleshooter to compute the entailments
of his measurements.

These rules can also be used to propose measurements. For example:

If V5 low, then R9 is open.
If 13 = high, then [RI, R9, C61 is bad.
If 19 = low, then [R4, Q4, TI] is bad.

.0
First, pull out all the rules whose consequences mention components still in the
candidate set. From those choose an antecedent which is still unknown, but which
if known, would provide maximum information about the remaining components in
the candidate set. Maximum information gain is a function of the cost of
measuring the antecedent and how well it works to split the candidate space in
half. In the above example, we would measure 13. .

What are some of the problems of using this approach to troubleshoot?
The main problem is illustrated by the knowledge engineer trying to fit empirical
associations into the knowledge base. I'd estimate that even a simple circuit like
the IP-28 requires something like 10,000 rules. So, what happens when you have
to add the 10,001st rule? Where do you put it? Well, you just don't know. The
rules are flat and unstructured. How do you know the new rule doesn't contradict
previous ones? How do you know that you haven't missed some set of faults? It's
almost impossible to tell, and that's the intrinsic fatal flaw of any troubleshooting
scheme based on empirical associations.

There are advantages to this approach, however. One is that the
knowledge is now explicit in the program. It's also a bit easier to modify and
we've got some inference, although it's very weak. However, its robustness is
still suspect because there are 10,000 rules that had to be written down. The
generality is low, but it's better because 10,000 rules are better than 100,000 lines
of Pascal. Efficiency is actually good because the measurements that it proposes
depend on previous measurements. In fact, it comes close to being optimal. _
Constructibility is still bad, however, because extracting 10,000 rules is a very
painful task.

87



Before I move on to more complicated stuff, let's look at a very simple
idea that gets around many of the problems associated with the empirical
association method. Consider the pool of rules. We notice that the pool can be
broken into subsets associated with circuit modules. That observation is based on
the fact that the function of a circuit arises out of this structure. The device has 0
a physical manifestation. This structure can be used to organize the rules.

Let's say the knowledge base contains rules which state that if V6 is low,
*this implies that Q6 is all right or "OK." If V6 is low, that implies that Q5 is OK;

and if V6 is low, that implies that R6 is OK. If a troubleshooter incorporates an
explicit notion of structure, these three rules can be collapsed into one rule: If "
V6 is low, this implies that V (ref) is OK. This idea is very simple, but it actually
gives you a surprising amount of leverage. For example, if you see that the same
antecedent says something about 3 of the 4 components of a module, maybe
there's a rule missing for the fourth component.

Similarly, a causal model like that of Rieger and Grinberg can be used in -
the same way to organize the rules. In fact, it really doesn't matter much what is
used to organize the rules. If there's only a little bit of truth in what you use to
organize rules, the robustness is going to be improved as it is easier to notice
missing rules.

The three approaches to troubleshooting we've discussed thus far have
ignored the fact that the device operates as a consequence of the behavior of its
parts. That's a radical observation for the people in the empirical association
camp. The idea of the fourth approach to troubleshooting, the use of deep
knowledge about behavior, is very simple. Consider the example in Figure 2:

x f f(x)

h z

y g g(y) z=h(f(x),g(y)

Figure 2.

There are two inputs to the device: x and y. X goes through module f causing
f(x), y goes through module g causing g(y), and both are inputs to module h causing
output (h(f(x),g(y)). This sort of reasoning allows us to compute an expectation of
what the value at z must be if we know what are the inputs. Then we can make a
measurement and see if it differs from expectations. Let's suppose that z
measures differently than expected. One possibility is that h is faulted. Or, we
can assume h is OK and g is correct and compute what the faulty f(x) is. Knowing
x and the faulty f(x) we can compute the fault in f.

88



That's not a bad idea, but it won't quite work. It might work for simple
cases like this one, but it won't work in general. Often this algorithm will impugn
every component of the circuit. The reason is that if the circuit contains memory
or feedback or is analog or if the wires are bidirectional or the functions are hard
to invert, the method won't work. In other words, we are going to have to do 6
something different, because I've just covered 99 percent of the circuits in the
world.

What we should do is describe the behavior of every component by a
constraint that can be used in any way--forward, backward, or sideways. There's
no notion of forward and backward in constraints. An example of constraint is •

Ohm's Law E=IR. If you know the voltage and the current, then you can
determine the resistance. It doesn't cause the resistance. If you know the
resistance and the current, you can determine the voltage, but the resistance and
the current don't cause the voltage.

We can use the constraint propagation, the idea of composing constraints .6
with each other, to construct expectations. In Figure 3, suppose you measured the
voltage between node 15 and node 14 and node 16 and node 14. Using Kirchhoff's
Voltage Law, you can deduce the voltage across resistor R5. If you know the
voltage across the resistor, you can deduce the current through it using Ohm's
Law of constraint. This leads to an expected R5 current of 3 milliamperes (mA).
However, that's only valid assuming that R5's resistance hasn't shifted from what
it should be. If R5 has shifted in value, the predicted and measured currents are
going to be different. Thus, R5 is an assumption of the propagated current of
3mA.

6

Main par I of WPM'

power Sulply f"

dip13 R5 # IS R24 N124 R3 N25 03

_ I
N114

Figure 3. Constant voltage source

Moving on, the voltage across D5 was measured to be 34 volts which is
less than the zener's breakdown voltage. Thus the current through D5 is zero.
Notice that this propagation depends on two assumptions: (1) R5 is not faulted
and (2) D5 is not faulted. Using Kirchhoff's Current Law we can propagate this
current through R4. As I'm assuming there are no extra wires or open wires, this
propagation step adds no new assumptions. Knowing the current through R4
allows us to propagate the voltage across it by Ohm's Law. Of course, this
propagation is dependent on R4 still having its expected resistance. Thus, the

89



voltage acros, R4 is 7.18 volts assuming that R5, D5, and R4 have not shifted in
value.

Now, how do we use this information to troubleshoot? The basic idea of
deep knowledge about behavior as an approach is that the propagations allow you
to construct expectations of circuit behavior. If you construct an expectation and
make measurements at a point of expectation, you get some information. There
are two things that can happen. On the one hand, the measurement can
corroborate the expectation. For example, we might measure the voltage across
R4 and discover it actually is 7.18 volts. Thus, the fault does not lie in R5, D5, or
R4. On the other hand, if we discover that the voltage across R4 is zero volts,
the measurement disagrees with the propagation. We would then conclude that
either R5, D5, or R4 is faulted. Furthermore, if we assume that the circuit
contains only one fault, every other component in the circuit is unfaulted.

This troubleshooter proposes new measurements by choosing those O
expectations to corroborate or conflict. It examines the set of all expectations
that have been constructed for which a measurement has not yet been made, picks
the one which gives maximum information, and then makes that measurement. In
other words, we have a troubleshooter that both computes entailments and
proposes measurements.

Lest you think that I am completely out in a dream world with this
simplistic scheme, let me illustrate a few of the things that have to be patched to
make the propagation-based troubleshooter actually work. In the real world there
are meter errors, manufacturing errors, and wide tolerances on transistor
specifications. Therefore, the troubleshooter has to consider the variability,
that's problem number one. Second, I know that component models aren't all - .
constraints. The models are made up of inequalities on voltages and currents. So
actual component models are fairly complex.

The second reason you might think that I'm wrong is that the
corroborations and conflicts all go out the window when the values have
tolerances. For example, it gets far more complicated when comparing
expectations with measurements. In general, you have four cases. First, if the
ranges of the expectation and the measured don't overlap, you've got a conflict
unambiguously. Second, if they corroborate and they're roughly equal, you
actually do not have the necessary evidence to rule out the assumptions
underlying the expectations. This corroboration could be correct, yet the
underlying components could still be faulted because there is so much variability O
in the values. Another more sophisticated mechanism is used to solve that
problem.

Third, what happens if the measurement is very tight but the expectation
has a very broad range, or the reverse? For each of these cases, information can
be gathered about the candidate set.

So far we are constructing expectations that are not causal, we are
merely using rules about how components behave in general. Now, one of the
advantages of this new approach is that all of a sudden all the necessity for most
of the empirical associations goes away. Most of the rules get automatically

90



handled by the coincidence mechanism. The propagation-based mechanism
directly obviates the need for most of the rules by instead making inferences
about the faultedness of circuit components based on first principles.

Suppose, for example, we had a rule which said if the voltage across R5
was low, the CCS was open. Under the old system, another rule is needed which
states that if the current through R5 was low, the CCS is open. In the
propagation-based scheme, this second rule is now superfluous. If you discover
the current through R5, the propagator will construct the expectation that the
voltage across it is low, and that triggers "voltage low." (That expectation is
based on R5, so that antecedent assumption must also be included in the
consequent of the rule.) As a consequence, the rule set collapses dramatically. In
fact, by this point, we have reduced the original set of 10,000 rules to about 100.

Since there are only 100 rules, robustness is dramatically improved. A
fault in a component is now a violation of its own law, not a guess that some
designer made beforehand. Generality is also much better. The approach can be
applied to more circuits. Its efficiency is good, and its constructibility has S
become a lot better because now there are only 100 rules to discover. Look at
what we've done--we've beaten on the knowledge until there's almost no
knowledge in the system about the particular circuit. Instead, we've got a little
bit of knowledge, deep knowledge, about the domain of circuits in general, and
that deep knowledge applies to all circuits, not just this one.

Next, let's consider the fifth approach to troubleshooting deep
knowledge about fault modes. So far we've only talked about a fault as being
deviation from expected behavior, but devices also have fault modes, and those
fault modes are very important. For example, consider this circuit:

A

Suppose we measure a voltage at the input A, construct an expectation of what
the voltage must be at the output of A using the model for A, and so on through B
and E. Now we make a second measurement at the output of E and find it that
conflicts. We can immediately deduce that one of A, B, or E is faulted. If there A-
is only one fault in the circuit, D and C are definitely unfaulted. That's as far as
we got by the old strategy, but we can actually get a lot further by asking the
question: What caused it? Not what caused the fault, but what caused the

91



expectations to go awry, and the only thing that can cause the expectation to go
awry is something wrong with A, B, or E. I'm going to introduce a second
propagator. The first propagator propagated behavior, the second one propagates
errors or faults. You can only propagate causally back up through an expectation

U= that you've constructed. The only thing that could cause the expectation to be
wrong is A, B, or E. So this second propagator inverts expectations that have
already been constructed by the first propagator. So, therefore, I need to have
more rules about components and it gets rather complicated. In fact, there's
quite a few rules one needs in order to run the propagator backwards, but I won't
talk about these new rules in this talk.

This reduces the rule set from 100 to 25. Now why does it do that? We
did not build this fault propagator for this purpose. We thought it would just give
us better explanations, but it actually helped. In the old scheme, a component
was either faulted or unfaulted. That means that the only information recorded
was whether a component was faulted or not. But suppose I measure a voltage to
be low, that might tell me that R6 can't be high. You know that, I know that, but
the program with the candidate sets can't represent that fact. So if it makes a
second measurement whose entailment is that R6 can't be low, all of a sudden you
and I know that if R6 isn't high, and it isn't low, then it's OK. But the candidate
set representation won't support that inference. By extending the representation
to include fault modes, this information that the fault propagator collects is
utilized. In the old scheme, there were many extra rules to handle situations like
this. In the R6 example, the R6 rule could be deleted.

The game is--we want to get rid of knowledge. Knowledge isn't power.
Knowledge is evil. So we're left with 25 rules for this device. And the first 16
are shown in Figure 4. In doing research, we spent a lot of time staring at these ...
rules to identify what kinds of inferences lay behind them. What really stuck out
from looking at those rules is that each depended on a very sophisticated
inference on a causal model. So that pushed us into the research we're doing right
now: How to use a causal model to troubleshoot a circuit.

Let me briefly illustrate this sixth and final approach to troubleshooting
by showing an inference that the other propagation-based troubleshooters can't .....
make but a causal model can. Let's look back at Figure 3. The rule is, "If Q5 is
off, then this reference can't be too low." The only way the reference is
connected to the rest of the power supply is through Q5. This is a topological
inference. That doesn't tell you the rule, it's just an observation to help you
understand the rule.

This rule is based on the fact that Q5 disconnects the voltage reference
from the power supply. Suppose we have a causal model which identifies the two
main control feedback paths of the IP-28. Thus, the way the supply works, is to
compute the minimum of the two settings, and that's the output. This minimum is
computed through a feedback path in which Q5 is a part. If this voltage reference
were too low, it would turn on Q5 causing a symptom at the output. So there's no
way that a low voltage on the voltage reference could be contributing to the
power supply's faulty behavior if Q5 were disconnected. If Q5 were disconnected
(i.e., Q5 off) the output could be high due to the reference being too high, but the
output could not be too low due to the reference being too low. That's an example

9

92

"i



Demon l :
AND(STATE Q2 SATURATED-OFF))-->)
IOK ILK CURRENT/SOURCE)

( BLK RECTIFIER/FILIER))DemonlIZ : "-

(AND (VOLTAGE (NIl GROUNb)
VL-OVER))--

(AND (LOCALI/L REG OVE R-V-LIM)
(ASSERT (STATE IP-28 HIGH)))

Demon 0 3 :
(AND (VOLTAGE (NIl GROUND)

VL))-- >
(LOCALI/L REG OVER-I-LIM OKI

Demon04 :
AND (CURRENT N/OP CL-OVER))-- >
AN (LOCALI/L REG OVER-I- IN)

(ASSERT (STATE IP-28 HIGH)))
Demo* 0S :(AND (VOLTAGE (Nil GROUND)

VL-UNDER)

(CURRENT N/OP CL-UNDER))--)>
(AND (LOCAL!/L IP-28 LOW)

(ASSERT (STATE IP-28 LOW)))
Demon 6(

(AND (VOLTAGE (NIl GROUND)
VERY-LOW)

(CURRENT NIOP CL-UNDER))-- ,0
(AND (LOCALI/L IP-28 VERY-LOW)

(ASSERT (STATE JP-28 LOW)))
Demon # 7

AND (CURRENT N/OP CL-UNDER))--))
ELINI/L REG OVER-]-LIN)

Demon 0 8:
(AND (CURRENT N/OP CL))-->> -
(LOCALI/L REG OVER-V-LIM OK)

Demof v 9
AND (STATE Q5 OFF))--)>

IELIM!/L V/DIF/CONT LIMIT-TOO-LOW ALWAYS-ON)
Demo 10 :

(AND (VOLTAGE (NIl GROUND)
VL-UNDER) )>--

(ELIN!/L REG OVER-V-LIM)
Demon 11 :

(AND (VOLTAGE (NIl GROUND)
VERY-LOW)) -->>

(ELINf/L REG OVER-V-LIM)
Demon 0 12 :

(AND (STATE Q6 OFF))-->)
(AND (ELIMI/L I/VOL/CONT LIMIT-TOO-LOW ALWAYS-ON) 0

(OK C5))
Demon 0 13 :

AND (STATE 05 ON))-- >
LOCAL-OR-FAULTEDI/L (I/VOL/CONT ALWAYS-OFF LIMII-TOO-HIGH)-

(V/DIF/CONT ALWAYS-ON LIMIT-TOO-LOW

Demonl14 LIMIT-TOO-HIGH)) .0

AND (CURRENT C/Q2 LOW))-->>
IELINI/L CCS OK)

Demon 0 15 :
(AND (VOLTAGE (N4 GROUND)

NORMAL))-->)
(ELIMI/L CCS HIGH-IMPEDENCE)

Demon 0 10 :
(AND (CURRENT C/Q2 NORMAL))-->

Figure 4. Demon Rules

93

0



... .... "" ...
p

of an inference that cannot be captured in the other five troubleshooting
approaches. The only reasonable way I've seen to do it is to construct a
mechanistic model.

Here's my current game: You give me a schematic for a power supply,
the program reads it in, parses it, constructs a causal model, then generates the
25 rules from the causal models. Then I have a complete troubleshooter. I have a
troubleshooter that works if you give it a power supply, and it will troubleshoot it.
You don't have to sit there and add more things to it. It works solely from the
schematic like a human technician.

So look what I've done. I've used theory and inference to beat knowledge
to almost nothing. The little bit of knowledge that I do have is about circuits in
general. I have achieved robustness, generality, efficiency, and constructibility.
But, there's a very high price: Why does it work and what did I have to do? It •
works because there was a deep theory of circuits, and it had to be made
computational. The fundamental business of AT is getting deep theories of various
domains and making them computational. But don't send away for my
troubleshooter. I haven't got it completely working yet and there are still a few
problems.

Thank you.

94

[ '

0

L "4
• _, n|, " " = m '' '= = = -=- . ... - " = '1 ' a " *' '- ''= " . ... . 0



ABOUT THE AUTHOR .

Dr. Johan de Kleer is a member of the Intelligent Systems
Laboratory at XEROX Palo Alto Research Center. He is
interested in understanding how machines work and how -

they can be repaired.

95



0

DIAGNOSIS BASED ON DESCRIPTION OF STRUCTURE AND FUNCTION

Randall Davis , Howard Shrobe , Walter Hamscher
Karen Wieckert , Mark Shirley, Steve Polit

The Artificial Intelligence Laboratory Digital Equipment Corp.
Massachusetts Institute of Technology

LS

Abstract
. While expert systems have traditionally been built using large collections of rules based on

empirical associations, interest has grown recently in the use of systems that reason from
representations of structure and function. Our work explores the use of such models in •
troujbleshooting digital electronics.

We describe our wo:k to date on (i) a language for describing structure, (ii) a language for
describing function, and (iii) a set.of principles for troubleshooting that uses the two descriptions to
guide its investigation.

In discussing troubleshooting we show why the traditional approach --- test generation ---
solves a different problem and we discuss a number of its practical shortcomings. We consider next
the style of debugging known as discrepancy detection and demonstrate why it is a fundamental
advance over traditional test generation. Further exploration, however, demonstrates that in its
standard form this approach is incapable of dealing with commonly known classes of faults. We
explain the shortcoming as arising from a number of interesting assumptions made implicitly when

. using the techinque.
In discussing ho , to repair the problems uncovered, we argue for the primacy of models of

causal interaction, rather iz n the traditional fault models. We point out the importance of making
these models explicit, se. a'ed from the troubleshooting mechanism, and retractable in much the
same sense that inferenc ,. re retracted in current systems. We report on progress to date in
implementing this approach. . .

An earlier version of this roport appeared in Proc AAA1, 1982.

lhis report describes research do#.-- at the Artificial Intelligence Laboratory of the Massachusetts Institute of
Technology. Support for the lab, attry's Artificial Intelligence research on electronic troubleshooting is
pro)vided in part by the Digital Equipi,.en; Corporation.

Peprinted with permission from The American Association for Artificial Intelligence,
originally appeared in AAAT-82 Proceedings.

97



Introduction
While expert systems have traditionally been built using large collections of rules based on

empirical associations (e.g., 191) interest has grown recently in the use of systems that reason from
representations of structure and function (e.g., [81, [7], 151). Our work explores the use of such
models in troubleshooting digital electronics. 0

We view the task as a process of reasoning from behavior to structure, or more precisely,
from misbehavior to structural defect. We are typically presented with a machine exhibiting some
form of incorrect behavior and must infer the structural abberation that is producing it. The task is
interesting and difficult because the devices we want to examine are complex and because there is
no well developed theory of diagnosis for them. 0

Our ultimate goal is to provide a level of performance comparable to that of an experienced
engineer, including reading and reasoning from schematics; selecting, running, and interpreting the
results of diagnostics; selecting and interpreting the results of input test patterns, etc. The initial
focus of our work has been to develop three elements that appear to be fundamental to all of these
capabilities. We require (i) a language for describing structure, (ii) a language for describing
function, and (iii) a set of principles for troubleshootinq that uses the two descriptions to guide its
investigation. This paper describes our progress to date on each of those elements.

In discussing troubleshootinq we show why the traditional approach ... test generation ...
solves a different problem and we discuss a number of its practical shortcomings. We consider next
the style of debugging known as discrepancy detection and demonstrate why it is a fundamental
advance over traditional test generation. Further exploration, however, demonstrates that in its
standard form this approach is incapable of dealing with commonly known classes of faults. We
explain the shortcoming as arising Ircm a number of interesting assumptions made implicitly when
using the techinque.

In discussing how to repair the problems uncovered, we argue for the primacy of models of
causal interaction, rather than the traditional fault models. We point out the importance of making
these models explicit, separated from the troubleshooting mechanism, and retractable in much the
same sense that inferences are retracted in current systems. We report on progress to date in
implementing this approach.

Structure Description 0

By structure description we mean simply the topology ... the connectivity of components. A
number of structure description languages have been developed, but most, having originated in work
on machine design, deal exclusively with functional components, rarely making any provision for
describing physical organization.' In doing machine diagnosis, however, we are dealing with a
collection of hardware whose functional and physical organizations are both important. rhe same
gate may be both (i) functional!y a part of a multiplexor, which is functionally a part of a datapath, etc.,
and (ii) physically a uart of cnip E67. which is physically part of board 5, etc. Both of these hierarchies
are relevant at different times in the diagnosis and both are included in our language.

We use the functional hierarchy as the primary organizing principle because, as noted, our
basic task invo'ves reasoning from function to 3tructure rather than the other way around.2 The
functional organization is also typically richer than the structural (more levels to the hierarchy, more
terms in the vocaoulary), and hence provides a uselul organizing principle for the large number of
individual physical components. Compare, for example, the functional organization of a board (e.g., a

1. rhos is curoust;' true wen Irt :, qujg-,s bphng Ihemselves a; comnpulot hardware dfsctiption )anguages They rarely
.w. nllon a piece o' 'r.y"rs.!a hardware
2. We 3le IyPic.jiy r.onironlnd with a n.ch ie thai mlsbohaves.;tot one ihat haS visible structural damage.

98

- 0



- "'" -.. .

4S

2

/ S S

Figure 2- Next level of structure of the adder.

The structural description of a module is expressed as a set of commands for building the
modLle. Hence the adder of Fig. 2 is described by indicating how to "build" it (Fig. 3). These
commands are then executed by the system, causing it to build data structures that model all the
components and connections shown. The resulting data structures are organized around the .

individual components. Executing the first expression of Fig. 3, for example, produces 4 data
structures that model the individual slices of the adder.

(definemodule adder

(repeat 4 i

(part slice-i adder-slice)
(run-wire (input-i adder) (input-i slice-i))

(run-wire (input-2 adder) (input-2 slice-i)) -

(run-wire (output slice-i) (sum adder))

(repeat 3 i (run-wire (carry-out slice-i) (carry-in slice-[i+i])))

(run-wire (carry-out slice-4) (sum adder))

Figure 3 - Parts are described by a nathname through the part hierarchy, e.g., (input-1 adder).
This description can be abbreviated as a bislce organilation, but is expanded here for illustration.)

Tiis approach to structure description offers two interesting properties: (a) a natural merging
of prccedural and object-oriented descriptions, and (b) the use of analogic representationS.

To cee the merging of descriptions, note that we have two different ways of thinking about
structure. We ,Ir.zcribe a device by indicating how to build it (the procedural view), but then want to
think about if as a collection uf individual objects (the object-oriented view). The first view is

99



memory controller with cache, address translation hardware, etc.) with the physical organization (1 pc
board, 137 chips).

The most basic level of our description vocabulary is built on three concepts: modules, ports,
and terminals (Fig. 1). A module can be thought of as a standard black box. A module has at least 0
two ports; ports are the place where information flows into or out of a module. Every port has at least
two terminals, one terminal on the outside of the port and one or more inside. Terminals are primitive
elements; they store logic levels representing the information flowing into or out of a device through
their port, but are otherwise devoid of substructure.

.0

-- MODULE

SWIRE A input- 1

ADDER -1 sun TERMINAL

input-2

Figure t - The basic terms used in structure description.

Two modules are attached to one another by superimposing their terminals. In Fig. 1, for
example, wire A is a module that has been attached to input-f of the adder module in this fashion. A111

The language is hierarchical in the usual sense; modules at any level may have substructure.
In practice, our descriptions terminate at the gate level in the functional hierarchy and the chip level in
the physical hierarchy, since for our purposes these are black boxes --- only their behavior (or
misbehavior) matters. Fig. 2 shows the next level of structure of the adder and illustrates why ports
may have multiple terminals on their inside: ports provide the important function of shifting level of
abstraction. It may be useful to think of the information flowing along wire A as an integer between 0 ."
and 15, yet we need to be able to map those four bits into the four single-bit lines insider the adder.
Ports are the place where such information is kept. They have machinery (des.ribed below) that
allows them to map information arriving at their outer terminal onto their inner terminals. The default
provided in the system accomplishes the simple map required in Fig. 2.

Since our ultimate intent is to deal with hardware on the scale of a mainframe computer, we
need terms in the vocabulary capable of describing levels of organization more substantial than the
terms used at the circuit level. We can, for example, refer to horizontal, vertical, and bitslice
organizations, describing a memory, for instance, as "two rows of five 1K ram's". We use these
specifications in two ways: as a description of the organization of the device and a specification for
the pattern of interconnections among the components. _

Our eventual aim is to provide an inte~rated set of descriptions that span the levels of
hardware organization ranging from interconnection of individual modules, through higher level of
organization of modules, and eventually on up through the register transfer and PMS level 121. Some
of this requires inventing vocabulary like that above, in other places (e.g., PMS) we may able to make
use of existing terminology and concepts.

100



convenient for describing structure, the second makes it easy to answer questions about it, questions
like connectivity, location, etc., that are important in signal tracing and other troubleshooting

. techniques. The two descriptions are unified because the system simply "runs" the procedural
description to produce the data structures modeling the device. This gives us the benefit of both 0
approaches with no additional effort and no chance that the two will get out of sync.

The representation is analogic because the data structures built are isomorphic to the
structure being described. "Superimposing" two terminals, for instance, is implemented as a
merging of the structure representing the terminals. The resulting data structures are thus connected
in the LISP sense in the same ways that the objects are connected in Fig. 2. The benefit here is
primarily conceptual, it simply makes the resulting structures somewhat easier to understand.

Our description language has been built on a foundation provided by a subset of DPL [1].
While DPL as originally implemented was specific to VLSI design, it proved relatively easy to "peel
off" the top level of language (which dealt with chip layout) and rebuild on that base the new layers of
language described above. .'

Since pictures are a fast, easy and natural way to describe structure, we have developed a
simple circuit drawing system that permits interactive entry of pictures like those in Figs. 2 and 4.
Circuits are entered with a combination of mouse movements and key strokes; the resulting
structures are then "parsed" into the language shown in Fig. 3.

Behavior Description
A variety of techniques have been explored in describing behavior, including simple rules for

* mapping inputs to outputs, petri nets, and unrestricted chunks .'f code. Simple rules are useful where
*. device behavior is uncomplicated, petri nets are useful where the focus is on modeling parallel

events, and unrestricted code is often the last resort when more structured forms of expression prove
too limited or awkward. Various combinations of these three have also been explored.

Our initial implementation is based on a constraint-like approach [10]. Conceptually a
constraint is simply a relationship. The behavior of the adder of Fig. 1, for example, can be expressed
by saying that the logic levels of the terminals on ports input-I, input-2 and sum are related in the
obvious fashion.

In practice, this is accomplished by defining a set of rules covering all different computations
(the three for the adder are shown below) and setting them up as demons that watch the appropriate
terminals. A complete description of a module, then, is composed of its structural description as
outlined earlier and a behavior description in the form of rules that interrelate the logic levels at its
terminals.

togetsumfrom(input-t input-2) do(+ input-t input-2)
to get input-I from (sum input-2) do(- sum input-2)
to get input-2 from(sum input-1) do (- sum input-1)

A set of rules like these is in keeping with the original conception of constraints, which A
emphasized the non-directional, relationship character of the information. When we attempt to use it
to model causality and function, however, we have to be careful. This approach is well suited to
modeling causality and behavior of analog circuits, where devices are largely non.directional. But we
can hardly say that the last two rules above are a good description of the behavior of an adder chip ...
the device doesn't do subtraction; putting logic levels at its output and one input does not cause a
logic level to appear on its other input.

The last two rules really model the inferences we make about the device. Hence we find it
useful to distinguish between rules representing flow of electricity (digital behavior, the first rule

101
IL -S



S

above) and rules representing flow of inference (conclusions we can make about the device, the next
two rules). This not only keeps the representation "clean", but as we will see, it provides part of the
foundation for the troubleshooting mechanism.

A set of constraints is a relatively simple mechanism for specifying behavior, in that it offers 0
no obvious support for expressing behavior that falls outside the "relation between terminals" view.
The approach also has known limits. Propagating values, for example, works well when dealing with
simple quantities like numbers or logic levels, but runs into difficulties if it becomes necessary to work
with symbolic expressions.3

The approach has, nevertheless, provided a good starting point for our work and offers
advantages like maintenance of dependency information: an indication of how the value at a terminal
was obtained, expressed in terms of what rule computed the value and what other values the rule
used in performing its computation. This is very useful in tracing backward to the source of
misbehavior.

Our system design offers a number of features which, while not necessarily novel, do provide
useful performance. For example, our approach offers a unity of device description and simulation,
since the descriptions themselves are "runnable". That is. the behavior descriptions associated with
a given module allow us to simulate the behavior of that module; the interconnection of modules
specified in the structure description then causes results computed by one module to propagate to
another. Thus we don't need a separate description or body of code as the basis for the simulation, .

we can simply "run" the description itself. This ensures that our description of a device and the .5
machinery that simulates it can never disagree about what to do, as can be the case if the simulation
is produced by a separately maintained body of code.

Our use of a hierarchic approach and the terminal, port, mod: le vocabulary makes
multi-level simulation very easy. In simulating any module we can either run the behavior associated
with the terminals of that module (simulating the module in a single step), or "run the substructure" of

: that module, simulating the device according to its next level of structure. Since the abstraction
shifting behavior of ports is also implemented with the constraint mechanism, we have a convenient
uniformity and economy of machinery: we can enable either the behavior that spans the entire module
or the behavior that spans the port.

Varying the level of simulation is useful for speed (no need to simulate verified substructure),
and provides as well a simple check on structure and behavior specification: we can compare the
results generated by the module's behavior specification with those generated by the next lower level

*of simulation. Mismatches typically mean a mistake in structure specification at the lower level.
We believe it is important in this undertaking to include descriptions of both design and

implementation, and to distinguish carefully between them." A wire, for example, is a device whose
behavior is specified simply as the guarantee that a logic level imposed on one of its terminals will be S
propagated to the other terminal. Our structure description allows us to indicate the intended
direction of information flow along a wire, but our simulation is not misled by this. This is. of course,
important in troubleshooting, since some of the more difficult faults to locate are those that cause
devices to behave not as we know they "should", but as they are in fact electrically capable of doing.

We encourage this separation by having a set of prototypical modules whose structure and _.
behavior are defined first. independently of any particular circuit. Adders, wires, and-gates, etc., are
defined "in vacuou", and then devices are constructed by assembling and interconnecting instances

3. What, for example, do we do it we know that the output of an or-gate is 1 but we don't know the value at either inputo) we
can retrain from making any conclusion about the inputs, which makes the riles easy to write but misses some information. Or
we can write a rule which express the value on one input in terms of the value on the other input. This captures the information
but produces problems when trying to use the resulting symbolic expression elsewhere.
4 A related concept is described in (41, labelled the "no function in structure" principle.

102



of those prototypes. While this offers no formal guarantees that our behavior definitions are accurate.
by distingushing clearly between behavior definition of an individual module and its intended use in a
circuit, and by forcing every module of a particular type to share the same behavior specification, we
provide an environment that strongly encourages attention to the issue.

Finally, the behavior description is also a convenient mechanism for fault insertion. A wire
stuck at zero, for example, is modeled by giving the wire a behavior specification that maintains its
terminals at logic level 0 despite any attempt to change them. Bridges, opens, etc., are similarly easily
modeled.

Troubleshooting
The traditional approach to troubleshooting digital circuitry (e.g., [31) has, for our purposes, a

number of significant drawbacks. Perhaps most importint, it is a theory of test generation, not a
theory of diagnosis. Given a specified fault, it is capable of determining a set of input values that will - -
detect the fault (ie, a set of values for which the output of the faulted circuit differs from the output of 0
a good circuit). The theory tells us how to move from faults to sets of inputs; it provides little help in
determining what fault to consider, or which component to suspect.

These questions are a central issue in our work for several reasons. First, the level of
complexity we want to deal with precludes the use of diagnosis trees, which can require exhaustive
consideration of possible faults. Second, our basic task is repair, rather than initial testing. Hence
the problem confronting us is "Given the following piece of misbehavior, determine the fault." We are
not asking whether a machine is free of faults, we know that it fails and know how it fails. Given the
complexity of the device, it is important to be able to use this information as a focus for further
exploration.

A second drawback of the existing theory is its use of a set of explicitly enumerated faults.
Since the theory is based on boolean logic, it is strongly oriented toward faults whose behavior can be
modeled as some form of permanent binary value, typically the result of stuck-ats and opens. One
consequence of this is the paucity of useful results concerning bridging faults.

A response to these problems has been the use of what we may call the "discrepancy
detection" approach (161, 141, [71). The basic insight of the technique is the substitution of violated
expectations for specific fault models. That is, instead of postulating a possible fault and exploring its .
consequences, the technique simply looks for mismatches between the values it expected from
correct operation and those actually obtained. This allows detection of a wide range of faults
because misbehavior is now simply defined as anything that isn't correct, rather than only those
things produced by a struck-at on a line.

This approach has a number of advantages. It is, first of all, fundamentally a diagnostic
technique, since it allows systematic isolation of the possibly faulty devices, and does so without
having to precompute fault dictionaries, diagnosis trees, or the like. Second, it appears to make it
unnecessary to to specify a set of expected faults (we comment further on this below). As a result, it
can detect a much wider range of faults, inc!uding any systematic misbehavior exhibited by a single
component. The approach also allows natural use of hierarchical descriptions, a marked advantage
for dealing with complex structures.

This approach is a good starting point, but has a number of important limitations built into it.
We work through a simple example to show the basic idea and use the same example to comment on
its shortcomings.

Consider the circuit in Fig. 4.5 If we set the inputs as shown, the behavior descriptions will

5. As is common in the field, we make the usual assumptions that there is only a single source of error and the error is not
transient Both of these are important in the reasoning that follows

103



. ... ;... - .v -.. v. i- -=. . . ..... • . . ... . . S*S . . . ...- _ - ' .. . . . . . . . - -. v - . -"• • .

indicate that we should expect 12 at F. If, upon measuring, we find the value at F to be 10, we have a
conflict between observed results and our model of correct behavior. We employ the notion of
dependency-directed backtracking [10] .to enumerate the possible sources of the problem. We check
the dependency record at F to find that the value expected there was determined using the behavior •
rule for the adder and the values emerging from the first and second multiplier. One of those three
must be the source of the conflict, so we have three possibilities to pursue: either the adder behavior
rule is inappropriate (ie, the first adder is broken), or one of the two inputs did not have the expected
values (and the problem lies further back).

Consideration of the first possibility immediately generates hypothesis # 1: adder- 1 is
broken.

.. T-

-AO - -- F (12)

j3 (12)

• ,, ct.-( 3

actual -- )
Figure 4 - Troubleshooting example using discrepancy detection.

To pursue the second possibility, we assume that the second input to adder-1 is good. In

that case the first input must have been a 4 (reasoning from the result at F, valid behavior of the
adder, and one of the inputs), but we expected a 6. Hence we now have a discrepancy at the input to
adder-1; we have succeeded in pushing the discrepancy one step further back. The expected value
there was based on the behavior rule for the multiplier and the expected value of its inputs. Since the
inputs to the multiplier are primitive (supplied by the user), the only alternative along this line of
reasoning is that the multiplier is broken. Hence hypothesis # 2 is that adder-1 is good and
multiplier.1 is faulty.

Pursuing the third possibility: if the first input to adder-1 is good, then the second input must
have been a 4 (suggesting that the second multiplier might be bad). Cut if that were a 4, then the
expected value at G would be 10 (reasoning forward through the second adder). We can check this'
and discover in this case that the output at G is 12. Hence the value on the output of the second
multiplier can't be 4, it must be 6, hence the second multiplier can't be causing the cui rent problem.

So we are left with the hypotheses that the malfunction lies in either the first multiplier or the
first adder. The diagnosis proceeds in this style, dropping down levels of structural detail as we begin
to isolate the source of the error. _

This approach is a useful beginning. Note, for example. that it is diagnostic: it enumerates
the devices that could have caused the symptoms noted. But the approach also has some clear

104

S



I.

shortcomings. Consider the slightly revised example shown in Fig. 5. Reasoning just as before,' the
fault at F leads us to suspect adder-I. But if adder-1 is faulty, then everything else is good. This
implies a 6 on lines y and z, and (reasoning forward) a 12 at G. But G has been measured to be 6,
hence adder-1 can't be responsible for the current set of symptoms. If adder-1 is good, then the fault
at F might result from bad inputs (lines x and y). If the fault is on x, then y has a 6. But (reasoning 0

forward) this means a 12 at G. Once again we encounter a contradiction and eliminate line x as a
candidate. We turn to line y, postulate that it is 0. This is consistent with the faults at both F and G,
and is in fact the only hypothesis we can generate.

111ULT - I

12 AD-D- J-1 F 112),

16]

3(12)
E6] *0O J--- ADD -2 ----- G (12

3~ MULT - 3-

*XsPcted-( )

Figure 5 - Troublesome troubleshooting example.

The key phrase here is "the only hypothesis we can generate". In fact, there is another quite -

reasonable hypothesis: the third multiplier might be bad." But how could this produce errors at both F
and G? The key lies in being wary of our models. The thought that digital devices have input and
output ports is a convenient abstraction, not an electrical reality. If, as sometimes happens (due to a
bent pin, bad socket, etc.), a chip fails to get power. its inputs are no longer guaranteed to act
unidirectionally as inputs. If the third multiplier were a chip that failed to get power, it might not only
send out a 0 along wire z, but it might also pull down wire C to 0. Hence the symptoms result from a
single point of failure (multiplier-3), but the error propagates along an "input" line common to two
devices.

The problem with this straightforward use of discrepancy detection lies in its implicit
acceptance ot unidirectional ports and the reflection of that acceptance in the basic
dependency-unwinding machinery. We implicitly assumed that wires get information only from output
ports --- when checking the inputs to multiplier-1, we said the inputs were "primitive". We looked only
at terminals A and C, never at the other end of th% wire at multiplier-3.

Bridges are a second common fault that illustrates an interesting shortcoming in the

6 The eager reader has no doubt already chosen a likely hypothesis. We go through the reasoning in any case, to show that

fie method outlined generates the same hypothesis and is in lact simply a more formal way of doing what we often do

intuilively -

7 Of the first.

105

-_ ---- 1



approach: the reasoning style used above can never hypothesize a bridging fault, again because of
implicit assumptions about the model and their subtle reflection in the method. Bridges can be
viewed as wires that don't show up in the design. But the traditional approach makes an implicit
closed world assumption ... the structure description is assumed to be complete and anything not 0
shown there "doesn't exist". Clearly this is not always true. Bridges are only one manifestation:
wiring errors during assembly are another possibility.

Let's review for a moment. One problem with the traditional test generation technology was
its use of a very limited fault model. The discrepancy detection approach improves on this
substantially by defining a fault as anything that produces behavior different from that expected. This ..
seems to be perfectly general, but, as we illustrated, it is in fact limited in some important ways. We
believe it is instructive to examine the source and nature of those limitations.

Models of Causal Interaction
One claim about the discrepancy detection approach is that it makes no assumptions about

the character of the fault. Yet our counterexamples show this not to be the case. What is the source
of the problem? We believe that the issue is not in fact the character of the fault models, it is
assumptions about models of causal interactions. In the port problem, for example. the assumption
was that there was only one possible direction of causality at an input port. For the bridge problem,
the assumption was that the only possible paths of interaction were the wires shown in the diagram.
These are assumptions about pathways of causality, not categories of faults.

There is, of course no problem in having assumptions about causal paths; candidate
generation in fact can't function without them. Given a problem noticed at some point in the device,
candidate generation attempts to determine which modules could have caused the problem. To
answer the question we must know by what mechanisms and pathways modules can interact.

The obvious answer is "wires": modules interact because they're explicitly wired togetl-er.
But that's clearly not the only possibility. Bridges, as we saw, are an exception; they are "wires" that
aren't supposed to be there. But we also might consider thermal interactions, capacitive coupling,
transmission line effects, etc., etc.8

Our task then, in generating possible candidates, is not to trace wires, it is to trace paths of
causality. Wires are only the most obvious pathway, they are no means the only one. In fact, given
the wide variety of faults we'd like to be able to deal with, we need many different models of
interaction.

And that leaves us on the horns of a classic dilemma. If we omit any interaction model, there
will be whole classes of faults we will never be able to diagnose. Yet if we include every model, our
candidate generation becomes virtually indiscriminate.9 What can we do? 0

The "Minimum Perturbation" Principle
We believe there is a way out of the problem, starting with the simple observation that some

faults seem to be easier to think about than others. Stuck-ats are perhaps the simplest, failures of -0
function (eg, a ROM cell malfunction) are slightly more difficult, bridges are more difficult yet, with
errors of assembly and errors in design at the far end of the scale.

We believe this results from the amount of "behavior perturbation" each fault introduces: a
measure of how "big" a change we get in the behavior of a device when we introduce each kind of

8 Notice that we can get behavioral interaction without explicit structural interconnection.
9. Another demonstration that the power lies not in the inference techniques . in this case discrepancy detection and
dependency directed backtracking .. but in the knowledge that we supply those techniques. i.e , the models of interaction.

106

" : . . ." . . .I | . . . * = . . . . . i I . . . . . . . I l i n l I . . . .. . . . . .



error.
Given such a metric, the suggestion is simply to start with the least complicated model and

only introduce more the complex ones as the simpler ones fail. We thus come to view diagnosis as
trying to find the "smallest" change that accounts for the behavior.

This seems to be a useful heuristic employed by human problem solvers, even in the face of
physical absurdity: given a choice, data wires are often assumed to be the source of a problem before
control wires. Since that makes no physical sense, the rationale must lie in the fact that it's much
easier to envision (and track down) the effects of, say, a bridge fault on a pair of data wires than it is to
deal with the same fault across a pair of control wires.

The difficult part, of course, is enumerating and ordering the models. As suggested above,
we have made a small start. The system we have developed uses the candidate generation approach
described above, and can handle both the original example in Fig. 4 and the "power loss" problem of
Fig. 5. Exactly the same tracing through causes is used on both cases, the only change is in the
model -- we modify how an input port can behave and the system then produces all three multipliers
as candidates. But considerably more remains to be done. in testing and elaborating our list of causal
models.

Summary
We have briefly described our work to date on developing languages and mechanisms for

describing structure and function in digital circuitry. The techniques we have developed offer a
number of useful advantages, including distinguishing clearly between design and implementation.

We traced briefly the evolution of automated troubleshooting. We noted that the traditional
technology focuses on test generation, which is only a small part of the diagnostic task. We saw that
the discrepancy detection approach offers a significant advance, but has a number of important
shortcomings in its standard usage. We found that those limits arise from some subtle and important 0
assumptions about the nature of the causal interactions between modules. Our response was to
assert the primacy of models of causality rather than models of faults. We are building a system in
which the complexity of the problem is handled by invoking the models explicitly, by layering them
carefully, and by being able to retract one model and substitute another in the event of failure.

We have significant work yet to do in determining a more complete and correct list of models, -0
and in determining the consequences of each assumption on the diagnostic process. But we feel this
is a key to creating more interesting and powerful diagnostic reasoners.

107

. ..



. _:r : .. . . . . .. " : "* "' '' - ;::" - :' .. . . . ... .. . .. .. " ' " "' : il.

References

[1] Batali J, Hartheimer A, The design procedure language manual, MIT Al Memo 598, Sept. 1980.

(21 Bell G, Newell A, Computer Structures: Readings and Examples, McGraw-Hill, 1971.

[3) Breu.r M, Friedman A, Diagnosis and Reliable Design of Digital Systems, Computer Science
Press, 1976. .-

[4) Brown J S, Burton R, deKleer J, Pedagogical and knowledge engineering techniques in the
SOPHIE systems, Xerox Report CIS-14, 1981.

[5) Davis R, Expert systems: Where are we and where do we go from here? AAAI Magazine, summer ...
1982. *0

[61 deKleer J, Local methods for localizing faults in electronic circuits, MIT Al Memo 394. 1976.

171 Genesereth M, The use of hierarchical models in the automated diagnosis of computer systems,
Stanford HPP memo 81.20, December 1981.1.
[8] Patil R, Szolovits P, Schwartz W, Causal understanding of patient illness in medical diagnosis,
Proc. IJCAI-81, August 1981, pp 893-899.

[91 Shortliffe E, Computer-Based Medical Consultations: Mycin, American Elsevier, 1976.

[101 Sussman G, Steele G, Constraints - a language for expressing almost-hierarchical descriptions,
At Journal, Vol 14, August 1980, pp 1-40.

108



CV) DIAGNOSIS VIA CAUSAL REASONING:
O PATHS OF INTERACTION AND THE LOCALITY PRINCIPLE'

I RANDALL DAVIS 0

The Artificial Intelligence Laboratory
Massachusetts Institute of Technology

545 Technology Square
Cambridge, MA 02139

Abstract observations about the nature of diagnostic reasoning and the 0
Interest has grown recently in developing expert systems selection and design of representations.

that reason "*from first principles-"".e., capable of the kind of
problem solving exhibited by an engineer who can diagnose a 2. CENTRAL CONCERNS
malfunctioning device by reference to its schematics, even though Four issues are of central concern in this paper. We
he may never have seen that device before. In developing such a describe them here briefly, enlarging on them in the remainder of
system for troubleshooting digital electronics, we have argued for the paper.
the importance of pathways of causal interaction as a key t Diagnosis can be accomplished via the interaction of S
concept. We have also suggested using a layered set of simulation and inference.
interaction paths as a way of constraining and guiding the Given knowledge of the inputs to a device and an understanding
diagnostic process. of how it is supposed to work, we can generate expectations

We report here on the implementation and use of these about its intended behavior. Given observations about its outputs,
ideas. We show how they make it possible for our system to we can generate conclusions about its actual behavior.
generate a few sharply constrained hypotheses in diagnosing a Comparison of these two, in particular differences between them, -
bridge fault. provides the foundation for our troubleshooting .

Abstracting from this example, we find a number of t Paths of causal interaction play a central role in
interesting general principles at work. We suggest that diagnosis diagnosis.
can be viewed as the interaction of simulation and interence and An important part of the knowledge about a domain is
we find that the concept of locality proves to be extremely useful understanding the mechanisms and pathways by which one
in understanding why bridge faults are difficult to diagnose and component can affect another. We argue that such models of
why multiple representations are useful. interaction are more fundamental than traditional fault models. -•

1. ItITRODUCTION t One technique for dealing with the complexity of
Interest has grown recently in the development of expert diagnosis is layering the paths of interaction.

systems that reason "from first principles", i.e., from an To be good at hardware diagnosis, we need to handle many
understanding of the structure and function of the devices they different kinds of paths of interaction. But this presents a
are examining. This approach has been explored in a number of problem. includinq all of them destroys our ability to discriminate
domains, with the "devices" ranging from the gastro-intestinal among potential candidates, yet omitting any one of them makes it
tract (6]. to transistors (1] and digital logic components like adders impossible to diagnose an entire class of faults. In response, we 5
or multiplexors [3.5]. Our work has focused on the last of these, suggest the simple expedient of layering the models, using the
attempting to build a troubleshooter for digital electronic most restrictive first and failing back on less restrictive models
hardware. only in the face of contradictions.

By reasoning from first principles, we mean the kind of t The concept of locality proves to be a useful principle
skill exhibited by an engineer who can troubleshoot a device by in both diagnosis and the selection of representations.
reference to its schematics, even though he may never have seen We find that the concept of locality, or adjacency, helps to explain
that particular device before. To do this we require something why bridge faults are difficult to diagnose: changes small and local _
more than a collection of empirical associations specific to a given in one representation are not necessarily small and local in
machine. We will see that the alternative mechanism has a degree another. We discover that locality can be defined by reference to
of machine independence and is revealing for what it indicates the paths of interaction and find that the utility of multiple
about the nature of the diagnostic process. representations arises in part from the different definitions of

We have previously proposed the use of a layered set of locality they offer.
models as a mechanism for guiding diagnosis (2,3]. Here we
describe the implementation of that idea and demonstrate its utility 3. BACKGROUND _
in diagnosing a bridge fault. We then abstract from this example If we wish to reason from knowledge of structure and
to consider why bridge faults are difficult to diagnose and why behavior, we need a way of describing both. We have developed
multiple representations are useful. This results in a number of representations for each of these, described in more detail

elsewhere [3.41. We limit our descnption here to reviewing only
This report describes research done at the Arlri,cial inieiigence Laboratory of those characteristics of our representations important for

11e nsa kit ifoie or Tecrhnology Support o he laboratory'S Arificial
iitii.gence trseach on eecttonic itoubleSh OOing is povided in part by a grant understanding the example in Section 4.
irom ihe DJ.ial EQupment Corporaton The basic unit of description is a module, similar in spirit

Reprinted with permission from the American Association for Artificial Intelligence,

originally appeared in AAAI-83 Proceedings.

109



to the notion of a black box. Modules have ports, the places techniques that have been used in automated reasoning about
through which information enters and leaves the module. circuits. We discussed test generation and argued that it handles

only part of the problem, because it requires that we choose a part
3.1 Functional Organization, Physical Organization to test and specify how it might be tailing. We then described

By structure we mean information about the discrepancy detection, showing how it offered important
interconnection of modules. Roughly speaking, it is the advantages.
information that would remain after removing all the textual But in examining cases involving a bridge fault or power

annotation from a schematic. failure. we discovered that straightforward use of discrepancy
Two different ways of organizing this information are detection seemed unable to generate the appropriate candidates.

particularly relevant to machine diagnosis: the functional view We argued that the problem lay in distinguishing carefully
gtves us the machine organized according to how the modules between the machinery we use for solving problems and the
interact; the physical view tells us how it is packaged. We thus knowledge that we give that machinery to work with.
prefer to replace the somewhat vague term "structure" by the S
more precise terms functional organization and physical 3.3.1 Discrepancy Detection and Candidate Generation

organization. In our system every device is described from both Since understanding both the strengths and imitatons of

perspectives, producing two distinct (but interconnected) discrepancy detection is important in the-Temainder of this paper,

descriptions. we review the technique briefly. Consider the simple example

Both descriptions are hierarchical in the usual sense: shown in Figure 1.

modules at any level may have substructure. An adder, for

example, can be described by a functional hierarchy (adder, %OT •
individual bit slices, half-adders, primitive gates) and a physical 0
hierarchy (cabinet, board, chip). The two hierarchies are
interconnected, since every primitive module appears in both: a i n uA

single xor-gate for example, might be both functionally part of a OR
half-adder, which is functionally part of a single bitslice of an Input B

adder. etc., and physically part of chip E67. which is physically
part of board 5. etc. Cross-link information for primitive modules
is supplied by the schematic: additional cross-links can be inferred Figure I . Simpie troubleshooting example

by intersection (e.g., the adder can be said to be on board 3
because all of its primitive components are in chips on board 3). Assume that the actual device yields a 0, producing a

discrepancy between what our simulation rules predicted and

3.2 Describing Behavior what the device produced.

We define behavior in terms of the relationship between We begin the process of generating plausible candidates
..devices whose misbehavior can explain the symptoms ..bythe information entering and leaving a module, and describe it by asking why we expected a 1 at the output. There are three

writing a set of rules. A complete specification of a module, then, as n s: we expected at the o ring. e ere tedincldesitsstruturl dscrptio asoutinedaboe ad a reasons: we expected that the OR gate was working. we expected
includes its structural description as outlined above and a INPUT-A to be , and INPUT-B to be 1. Assuming that there is a
behavior description in the form of rules interrelating the single point of failure, one of these expectations must be
information at its ports.

As we have noted elsewhere [3,4], we use rules that incorrect.

capture two distinctly different forms of knowledge: simulation If the first expectation is incorrect, then the OR gate is

rules model the electrical behavior of a device, while inference failing, hence we can add that to our candidate list.

rules capture the reasoning we can do about it. If one of the other expectations is incorrect, the OR gate

As a simple example, consider the behavior of an OR is working and the problem lies further back. But if the OR gate is
gate. The device simulaton rule is' working, the inference rules about it are valid in this case the

gte. The ei sutio rul.ten s' outputnference rule shown earlier would indicate that both inputs must
If either input is a 1. then the output is %, hae eee0

the output is 0 havebeen 0.
One of the device inference rules is This matches our second expectation (INPUT -A - 0), so

there is no discrepancy and thus no need to explore this
If the output is 0, then both inputs must have been expectation further. That is. the devices "upstream" of INPUT-A
0.

Since the device is electrically unidirectional, it is clear that only may or may not be completely free of faults, but under the current

the first rule can be modeling physical causality. The second rule, set of assumptions (made explicit below), none of them can be

and the inference rules in general, capture conclusions we can responsible for the observed misbehavior.

make about the inputs of the device given its output. There is a discrepancy between our inference and the

This approach to describing behavior is very simple, but third expectation, since we expected a 1 from the AND gate. We

has nevertheless provided a good starting point for our work. proceed now with the AND gate lust as we did with the OR gate,
asking why we expected a 1, adding the gate to our list of

3.3 Troubleshooting candidates and pushing the interred values yet further back in the

In previous papers [2.3] we outlined a progression of circuit.
We describe this style of diagnostic reasoning as the

interaction of simulation and inference S-mulation generates

I ThiS has been rendered in English to make it clear, for an example of ite expectations about correct behavior based on inputs and knowing
internal srntax e 131. how devices work (the device simulation rules) Inlerence

110

• . .. . . . . . . = . .. . . . . . . . . . . . .



r

qnerates conclusions about achal behavior b3sed on observed suggest that the ddficult and important work is their enumeration
otputs and device inference rules. The comparison of these two, and careful organization. We get a hint about organization from
in particular differences between them, provides the foundation what a good engineer might do when faced with the dilemma
for our troubleshooting and has produced a system with a number above: make a number assumptions to simplify the problfm,
of advantages. making it tractable, but be prepared to discover that some of those

It is, first of all, fundamentally a diagnostic technique, assumptions are incorrect. In that case, surrender them and solve

since it allows systematic isolation of possibly faulty devices, the problem again with fewer simplifications.
Second, since it defines failure functionally, i.e., as anything that This leads to the suggestion of layering the models. We
doesn't match the expected behavior, it can deal with a wide start the diagnosis with the most restrictive model, the one that
range of faults, including any systematic misbehavior. Third, while considers the fewest paths of interaction, and only use less
we have illustrated it here at the gate level, the approach also restrictive models if this one fails By "fail" we mean that we reach
allows natural use of hierarchical descriptions, a marked an intractable contradiction: given the current model and set of

advantage for dealing with complex structures (see, e.g., [3]). assumptions, there is no way to account for the observed
Finally, the technique also yields symptom information about the behavior. This approach permits us to simplify the problem in
malfunction. For example, if the OR gate is indeed the culprit order to get started, but does not prevent us from exploring more
then we know a little about how it is misbehaving: it is receiving 0 complex hypotheses.

and 1 and producing 0. This utility of this information is A plausible guess at an ordering for the models might be2

demonstrated below. localized failure of function (e.g., stuck-at on a wire,
failure of a RAM cell)

3.3.2 Mechanism and Knowledge * bridges

While this mechanism --- the interaction of simulation and " unexpected direction (inputs acting as outputs and driving •
inference ... is very useful, it is only as powerful as the knowledge lines)
we supply. Recall that in the example above, when exploring the multiple point of failure

cause of the discrepancy on INPUT-B, we looked only at the AND timing errors

gate. Why didn't we think that some other module, like the assembly error

inverter, could have produced the problem there? The answer of design error

course is that there is no apparent connection between them, In terms of the dilemma noted above, the models serve as
hence no reason to believe one might affect the other. a set of filters. They restrict the categories of paths of interaction

Note carefully the character of this assumption: it we are willing to consider, thereby preventing the candidate

concerns the existence of causal patnways, the applicability of a generation from becoming indiscriminate. But they are filters :hat
particular model of interaction. We saw no way in which the we have carefully ordered and consciously put in place. If we
inverter could affect INPUT -B, yet a pathway is clearly plausible ... cannot account for the observed behavior with the current filter in
a bridge fault, for example. We were implicitly assuming that there place, we remove it and replace it with one that is less restrictive,
was no such pathway. allowing us to consider additional categories of interaction paths.

We believe that the important focus in this work is S
understanding such assumptions and the nature and character of 4. LAYERS OF INTERACTION EXAMPLE: DIAGNOSING A
the pathways. This understanding is crucial to candidate BRIDGE FAULT
generation: given a discrepancy noticed at some point in the In this section we show how our system diagnoses a
device, candidate generation attempts to determine which bridge fault, illustrating the utility of layering the interaction
modules could have caused the problem. To answer the question models.
we must know by what mechanisms and pathways modules can There is, alas, a large amount of detail involved in
interact. Without some notion of how modules can affect one working through this example. Where possible we have
another, we can make no choice, we have no basis for selecting abstracted out much of it, but patience and a willingness to read
any one module over another. closely will still be useful. A simple roadmap of the example will

In this domain the obvious answer is "wires": modules help make clear where we're going.
interact because they're explicitly wired together. But that's not
the only possibility. As we saw, bridges are one exception; they The device is a 6-bit adder that displays an incorrect result
are "wires" that aren't supposed to be there. But we also might in Test Ti. The candidate generation mechanism outlined

- consider thermal interactions, capacitive coupling, transmission earlier produces a set St of three sub-components of the
line ellects. etc. adder that can account for the misbehavior.

Generating candidates then. is not done by tracing wires,
it is done by tracing paths of causality. Wires are only the most A second test T2 is run to distinguish among the three
obvious pathway. In fact. given the wide variety of faults want to possibilities in St. Candidate generation produces a set S2
deal with, we need to consider many different pathways oi of two candidates capable of explaining the results of T2.
interaction.

And that leaves us on the horns of a classic dilemma. If Surprisingly, the intersection of Si and S2 is null. We have All

we include every interaction path, candidate generation becomes reached a contradiction no single component is capable of
indiscriminate ... there will be some (possibly convoluted) explaining all the data.

pathway by which every module could conceivably be to blame.
Yet if we omit any pathway, there will be whole classes of faults we
will never be able to diagnose. 2 For the raionale behind this ordering see 121

The key appears to lie in the models of interaction: we

]11

IL 0



----

Put slightly differently, we have a contradiction under the A good strategy when faced with several candidates is to
current set of assumptions and interaction models. We devise a test that can cut the space of possibilities in hall. In this
therefore have to surrender one of our assumptions and use case changing the first input (21) to 1 will be informative: if the
a less restrictive model. output of SLICE2 does not change (to a 0) when we add 1 and 19,

then the error must be in either A2 or SLICE2.'
The next model in the list --. bridge faults ... surrenders the As it turns out, the result of adding 1 and 19 is 4 rather
assumption that the structure is as shown in the schematic than 20. Since the output of SLICE-2 has not changed, it appears S
and considers one additional interaction path: wires that the error must be in either A2 or SLICE-2.
between adjacent pins. But if we invoke the candidate generator, we discover an

oddity: the only way to account for the behavior in which adding I
Surrendering the assumption that the schematic is correct and 19 produces a 4 is if one of the two candidates highlighted in
only indicates that we know what the structure is not; the Fig. 3 (134 and SLICE.4) is at fault.
difficult problem is generating plausible hypotheses about
what it is.

Knowledge of' electronics otters insight into how the
physical modification -.. adding a wire ... manilests itself
functionally. This provides us with a behavior pattern
characteristic of bridges that can be used to hypothesize BLJG

their location. I

Physical adjacency then provides a strong additional
constraint on the set of connections which might be
plausible bridges. The combined requirement of functional
and physical plausibility results in the generation of only a
very few carefully chosen bridge hypotheses. 8

The first attempt to apply these ideas produces two
hypotheses that are plausible functionally, but prove to be Figure 3 - Components indicated as possibly faulty by the second test.
implausible physically.

Therein lies our contradiction. The only candidates that
Dropping down a level of detail in our description reveals account for the behavior of the first test are those in Fig. 2; the
additional bridge candidates, two of which prove to be only candidates that account for the second test are those in Fig.
physically plausible as well. Further tests determine that 3. There is no overlap, so there is no single candidate that
one of them is in fact the error. accounts for all the observed beha%,ior.

Our current model ... the localized failure of function
4.1 The Example has thus led us to a contradiction.' We therefore surrender it and

Consider the six bit adder shown in Fig. 2. Assume that consider the next model, one that allows us to consider an
the attempt to add 21 and 19 produces 36 rather than the additional kind of interaction path -- bridging faults. The problem
expected value of 40. Invoking the candidate generation process now is to see if there is some way to unify the test results, some
described above, we would find that there are three devices way to generate a single bridge fault candidate that accounts for S
whose individual malfunction can explain the behavior (SLICE-1, all the observations.
A2 and SLICE-2).? Much of the difficulty in dealing with bridges arises

because they violate the rather basic assumption that the
structure of the device is in fact as shown in the schematic. But
admitting that the structure may not be as pictured says only that
we know what the Structure srI. Saying that we may have a

SMIC I bridge fault narrows it to a Particular class of modifications to .

J consider, but the real problem here remains one of making a few

plausible conjectures about modificaions to the structure.
_. . ehaviorBetween which two points can we insert a wire and produce the

behavior observed?
4 The generaion of tests in this Paper is cuirently done by hand. everything else
is implemented work on automaing test generation is en oogess l

The loic behind this lest i3 s f oliows it he malunctioning componrent9
really were SLiCE l. then the both A2 and SLICE2 would be fault iree (the single
fault assumption) Hence the output of SLICE-2 would have to change when we
changed one of its inputs (Notice. however. if the output aciually does change.
we don't have any clear indlcaior' about the error location SLICE 2. lot example,
rght still be faulty.)

Figure 2 . Six bit adder constructed from single bit slices. Heavy lines 5 Note that dropping down another level of detail in the lunctional description
indicate components implicated as possibly fautly cannot help resolve the contradictiOn. because out functional Oescripion is a tree

rather than a graph in our work to date. at least, no component a used in more
3 The etamnle has been Smplified slghtly for presentation, than one way.

112

.°S



To understand how we answer that Question, consider _

what we have and what we need. We have test results, i.e.,
behavior, and we want conjectures about modification to
structure. The link from behavior to structure is provided by
knowledge of electronics: in TTL, a bridge fault acts like an o--
and-gate, with ground dominating.6 ±I I

From this fact we can derive a simple pattern of behavior ,,indicative of bridges. Consider the simple example of Fig. 4 and ,- o C ' 0 ? o7 7 S
assume that we ran two tests. Test 1 produced one candidate, " --.
module A, which should have produced a 1 but yielded a 0 (the \"
zero is underlined to show that it is an incorrect output). Module B ' 0
was working correctly and produced a 0 as expected. In Test 2 - ±
this situation is exactly reversed, A was performing as expected -- -L-- .... S.i- k
and B failed, C

The pattern displayed in these two tests makes it Figure S - Candidates and values at their ports. 0
plausible that there is a bridge linking the outputs of A and B: in
the first test the output of A was dragged low by B, in the second But the faults have to be physically plausible as well. For
test the output of B was dragged low by A. the sake of simplicity, we assume that bridge faults result only

from solder splashes at the pins of chips! To check physical
TEST I TEST 2 plausibility, we switch to Our physical representation, Fig. 6. WireA2 is connected to chip El at pin 4 and chip E3 at pin 4; the sum

E -- output of SLICE-4 emerges at chip E2, pin 13. Since they are not
adjacent, the first hypothesis is not physically reasonable. Similar
reasoning rules out Y, the hypothesized bridge between the[If carry.out of SLICE.2 and the sum output of SLICE-4.

Figure 4 - Pattern of values indicative of a bridge. Heavy lines indicate ,

We have thus turned the insight from electronics into a
pattern of values on the candidates. It is plausible to hypothesize I - Ud of A2
a bridge fault between two modules A and B from two different I" - sun output ofSLIC£E-4
tests it: in test 1, A produced an erroneous 0 and B produced a III- carry out of
valid 0. and in test 2. A produced a valid 0 while B produced an SLICE-2 "
erroneous 0. Note that this can resolve the contradiction of
non-overlapping candidate sets: it hypothesizes one fault that
involves a member of each set and accounts for all the test data.

Thus. if we want to account for all of the test data in the
original problem with a single bridge fault, we need a bridge that
links one of the candidates from the first test (SLICE.1, A2,
SLICE2) with one of the candidates from the second test (B4, Figure 6 . Physical layout of the board with first bridge hypotheses "indicated. Slices 0, 2, and 4 are in the upper 5 chips, slices 1, 3, andSLICE-4). and that mimics the pattern shown in Fig. 4. are in the lower S.)

Fig. 5 shows the candidate generation results from both
tests in somewhat more detail.' In that data there are two pairs of So far we have considered only the top level of functional
devices that match the desired pattern, yielding two functionally organization. We can run the candidate generator at the next
plausible bridge hypotheses: lower level of detail in each of the non-primitive components in

Dotted line X. bridging wire A2 to the sum output of Fig. 5. (Dropping down a level of detail proves useful here
SLICE-4; because additional substructure becomes visible, effectively
Dotted line Y, bridging the carry output of SLICE-2 to the revealing new places that might be bridged.)
sum output of SLICE-4. We obtain the components and values shown in Fig. 7.

Checking here for the desired pattern, we find that either of the
two wires labeled A2 and S2 could be bridged to either of the two
wires labeled S4 and C4, generating four functionally plausible6 This is in isct an OVersiinpiclon, bui accurate enough to be useful In any brgefut._

Case t Point here a how the inormation is used, a More complex model could bridge faults.
be subtituted and carried trough this rest of the problem.

7 As irdcaied earlser. the candidate generaion procedure can indicate for each
candidate the values that would have to exist at its p rts for that candidate to be
the broken one For example. for SLICE-1 to be at faut in test 1. it would have to
have it three inputs shown. with its sum Ouiput a zero (as expected) and is carry 8 Again this is correct but overwmoied le g. backplane Pins can be bent or
output also a zero (the manfeStaton at the error. uniderfined) bridged). but w above we can introduce a more complex model it necessary.

113



It is easy to find a test that distinguishes between these
T"r 7MI two possibilities : adding 0 and 4 means that the inputS of

SLICE-2 will be 1 and 0, with a carry-in of 0, while the inputs of

SLICE-4 will both be 0, with a carry-in of 0. This set of values will

show the effects of bridge Y, if it in tact exists- the sum output of

SLICE-2 will be 0 if it does exist and a 1 otherwise. When we

perform this test the result is 1, hence bridge Y is not in fact the= , "-L-' ' problem.
Bridge X becomes the likely answer, but we should still

test for it directly. Adding 4 and 0 (i.e., just switching the order of

the inputs), is informative: if bridge X exists the result will be 0 and

st,&i 1 otherwise. In this case the result is 0, hence the bridge labeled X
is in fact the problem."

5. PATHS OF INTERACTION; THE LOCALITY PRINCIPLE
Two interesting questions are raised by the problem

Figure 7 Candidates at the next level of functional description. Each

single bit adder is built from two *hal-adders" and an OR gate. (To solving used just above.
simpily the figure, only the relevant values e shown.) Why are bridge faults difficult to diagnose?

Why does the physical representation prove to be so useful?

Once again we check physical plausibility by examining To see the answer, we start with the trivial observation that all

the actual locations of A2, S2, S4. and C4, Fig. 8. ' As illustrated faults are the result of some difference between the device as it is

there, two of the possibilities are physically plausible as well: and as it should be. With bridge faults the difference is the

A2.$4 on chip El and $2-$4 on chip E2. addition of a wire between two physically adjacent points.

Now recall the nature of our task: we are presented with a
device that misbehaves, not one with obvious structural damage.

Hence we reason from behavior, i.e., from the functional

representation. And the important point is that for a bridge fault,

the difference in question --- the addition of a single wire ... is not

.x - local in that representation. As the comparison of Figs. 8 and 9

' makes clear, the new wire connects two points that are adjacent in
q-- P_ the physical representation but widely separated in the functional

representation.
The difference is also not as simple in that representation:

___ if we include in our functional diagram the AND gate implicitly

produced by bridge X, we see that a single added wire in the S
physical representation maps into an AND gate and a fanout in the

Ofunctional representation (Fig. 10).

Figure 8 - Second set of bridge hypotheses located on physical layout.

Switching back to our functional organization once more, -.. 0

Fig. 9. we see that the two possibilities correspond to (X) an

output to-input bridge between the xor gates in the rear
half-adders of SLICE.2 and SLICE-.4, and (Y) a bridge between two
inputs of the xor in the forward hall-adders of slices 2 and 4.

Figure 10 - Full functional representation of bridge fault X.

9 Note that ihe erroneous 0 on wire S2 can be in any of three physical locations.

because S2 tans out Insade the module it enters on its right)

10 As above. tests are generated by hand
11 Had both been riied out by direci test. then we would once sgs,n have had a

Figure 9 • Functional representation with bridge lault hypotheses contradwiiOn on our hands and would have had to drop back to corsder yet a
illustrated. more elaborate model wrth sditijonal paths of interaction

114

- .-. . .- .. -. -



This view helps to explain why bridge faults produce hypothesis, we use the next model in the sequence, one which

behavior that is difficult to envision and diagnose. Bridge faults allows consideration of an additional pathway.

are modifications that are simple and local in the physical We illustrated this approach by diagnosing a bridge fault,

description, but our diagnosis is done using the functional sharpty constraining the generation of hypotheses by using the

description. Hence the dilemma: The desire to reason from physical representation as well as the functional. Finally, we

behavior requires us to use a representation that does not found this to be one example of an important general principle .

necessarily provide a compact description of the fault. locality ... and discovered that one useful definition of locality is

This non- locality and complexity should not be surprising, given by the pathways of interaction.

since devices physically adjacent are not necessarily functionally

related. Hence there is no guarantee that a change that is small Acknowledgments

and local in one will produce a change that is small and local in Contributions to this work we made by all of the members of the

the other. More generally, changes local in one representation Hardware Troubleshooting project at MIT, including: Howie

are not necessarily local in another. Shrohe, Walter Hamscher, Karen Wieckert, Mark Shirley, Harold

We can turn this around to put it to work for us: Haig. Art Mellor, John Pitretii and Steve Polit.

Part of the art of choosing the right representation(s) for Bruce Buchanan and Patrick Winston offered a number of very S
diagnostic reasoning is finding one in which the change in useful comments on earlier drafts.
question i local.

This explains the utility of the physical representation: it's the

"right" one because it's the one in which the change is local. REFERENCES

But why is locality the relevant organizing principle? We

believe the answer follows from two facts: (a) devices interact [1] Brown J S, Burton R, deKleer J, Pedagogical and knowledge

through physical processes (voltage on a wire, thermal radiation, engineering techniques in the SOPHIE systems, Xerox Report 0
etc.) and (b) physical processes occur locally, or more generally, CIS-14, 1981.

causality proceeds locally: there is no action at a distance. To [2] Davis R, Reasoning from first principles n hardware

make this useful, we turn it around: troubleshooting, Intl Journal of Man.mqchine Studies, to appear,

The mechanisms (paths) of interaction define locality for us. 1983.

That is, each kind of interaction path can define a [3] Davis R, et al.. Diagnosis based on structure and function. Proc

representation. AAAI 1982, pp 137-142, August 1982.

Bridge faults arise from physical adjacency and hence are local in [4] Davis R, Shrobe H E, Representing structure and function, •

the physical representation. The notion of thermal adjacency IEEE Computer, to appear Sept 1983.

would be useful in dealing with faults resulting from heat (5] Genesereth M, The use of hierarchical models in the

conduction or radiation, electromagnetic adjacency would help automated diagnosis of computer systems, Stanford HPP memo

with faults dealing with transmission line effects, etc. 81 .20, December 1981.

Each Of these produces a different representation, different [6] Patil R. Szolovits P, Schwartz W. Causal understanding of

in its definition of locality. And each will be usefu for patient illness in medical diagnosis, Proc IJCAI-81, August 1981,

understanding and diagnosing a category of fault. pp 893.899.
There is still substantial work to do in enumerating the [7] Shirley W, Davis R, Digital test generation from symptom

pathways of interaction, but we seem at least to be asking the right information, :EEE 1983 VLSI Workshop, to appear.

question. It seems to make sense for a wide range of faults and
appears to be applicable to other domains as well. When
debugging software, for example. the pathways of interaction
differ (e.g., procedure call, mutation of data structures), but the
resulting perspectives appear to make sense and there are some

- . interesting analogies (e.g., unintended side effects in software are
in some ways like bridge faults; there are even faults where the

notion of "physical adjacency" is useful in understanding the bug,

as in out of bounds array addressing).

6. SUMMARY .
We seek to build a system that reasons from first

principles in diagnosing hardware failures. We view diagnosis as

the interaction of simulation and inference, with discrepancies

between them driving the generation of candidates. In exploring
this interaction, we find that the concept of paths of causal
interaction plays a key role, supplying the knowledge that makes

the diagnostic machinery work. But the desire to deal with a wide .0
range of faults seems to force us to choose between an inability to

discriminate among candidates and the inability to deal with some

classes of faults.
In response, we suggest layering the interaction models.

using the most restrictive first and hence considering the fewest
paths of interaction initially. If this fails to generate a consistent

115



A RoRSUTAXIOI 101 TZ FUNCTIONING OF DEVICES TA SU??_. . . .

COMnATION OF ZZFZrI PIOBLEM SOLVING STRUCTURES

0

V.S. Moorthy and B. Chandrasekaran

Deparment of Computer and Information Science 0
The Ohio State University

Columbus, OR 43210

(Soptember,1983)

.. BSTCT louse 110], proposes that they should represent
knowledge of the form "situation z action ->

) Most of the diagnostic systems that have been situation". The work of Patil 11] and Pople [12] 0
developed in medicine as vell as other domains can is based on the idea that the appropriate form for

properly be called "compiled"PHnovledge systems in the representation of deep knowledge is & causal

the sense that the knowledge base contains the net. We propose that with respect to the "surface

relationships between symptoms and malfunction causality" modeled in systems like MYCIN, the next

hypotheses in some form. Rowever, often in human deeper level to model causality is the functional

reasoning, an expert's knowledge of how the device representation of devices. An agent becomes an

unctious"4-is used toageerat new relationships expert in various tasks such as diagnosis, design,

during the reasoning process. This deeper level explanation, etc., by compiling appropriate problem 0
representation which can be processed to yield more solving structures from the functional

compiled diagnostic structures is the concern of representation.

this paper. Using the example of an household
buzzer, we show in 'this paperAwhat a functional In this paper ve describe a representational
representation of a device, looks like. *U also scheme for the functioning of devices and its
indicatewthe nature of the compilation process that utility for compiling an I-like (8,9, 17 ]
can product the diagnostic expert from this'deeper diagnostic expert system. Our focus here is on the
representation. jrepresentation; we discuss the compilation in more7 detail in [15.

1. Introduction
2. Comparison with ReLated Research

Recently the domain of devices has attracted
theoretical as well as applied A researchers 11, De kleer and Brown [1, 2, 3] have been working
2, 3, 4, 13, 14,161. To troubleshoot, modify and on the representation of an agent's knowledge about 6
monitor devices (eg. nuclear power plant, how a device actually functions. This
physiological organs, electronic circuits, computer representation, which they call "functional", is
software, etc.), it is necessary for an agent to actually a causally related sequence of behavioral
represent and use the knowledge about the states, some of which either belong to the
functioning of the devices. Moreover, an agent components or refer to the attributes of the
needs to know the functioning of similar devices in interconnections between the components. They then
order to become an expert in designing a new proceed to discuss the process of acquiring the
device, above "functional" representation from the .

structural knowledge of the device. They impose
Referring to the "depth" of knowledge in expert three interesting criteria that such a process, as

systems, Rart 15] and Michie [63 have suggested well as the "functional" representation, should
that systems with deep knowledge will be able to satisfy - naeely, "no-function-in-structure",
solve problems of significantly greater complexity "weak causality" and "strong causality."

than the so called surface saytens. Their remarks
on deep vs. surface systems seem to -apture a Our work differs from that of De kleer and Brown
fairly widespread feeling about the inadequacy of in two aspects: Firstly,our definition of what --
the first generation expert systems. Hovever, in constitutes a functional representation is
Chandrasekarsn and Mittal [7), it is argued that, different from theirs. Secondly, while they are
in principle, given any deep model of a domain, it concentrating on the acquisition of function from
is possible to compile an expert diagnostic system structure, we wish to understand the process by
(more specifically an ?0)Z-like diagnostic system which an agent uses the functional representation
18, 9, 17]) which is as powerful as the deeper for various problem solving activities, i.e.,
model, but more efficient than the deeper model for transforms the functional representation into
diagnostic purposes. "expert" problem solving structures. However,

these apparently different objectives are not as

Also, there is no general agreement on the form disjoint as they might appear. In fact, we
and content of these deep knowledge structures, strongly believe that our functional representation
tart 151 suggests that they should model causality will ultimately satisfy the twin requirements of

by mlti-level systems, while Michie, following acquirability and transformability into expert

Q1983 IEEE. Reprinted with permission from MEDCOMP '83, SECOND INTERNATIONAL
CONFERENCE ON COMPUTATIONAL MEDICINE AND MEDICAL COMPUTER SCIENCE, Athens, Oil,
September 30-October 1, 1983.

117



problem solving structures.

The functional representation of Davis et &I I
(131 has "functional" as veil as "physical"
hierarchies. Their "inference rules" and
"simulation rules" enable their 'violated
expectation" approach to troubleshooting. However, 6
their "functional" and "physical" hierarchies
neither differentiate nor relate
"function", "structure", "behavior", "assumptions"
and "deeper causal Knowledge " as ours. T,

3. A Representatioaal Skame for the Functioning of
Devices

3.1. The Representational Scheme Figure 3-1: A Sch atic Diagram of a

Our scheme allows multiplicity of levels in Household Buzzer

functional representation. The topamt level
describes the functioning of a device in terms of F T

the abstractions of its components. The next level
describes the functioning of these components using The functional specification of a device is
the abstractions of their subcomponents, and so on. illustrated below by describing one of the
As we shall see later, the hierarchy is not just
functional. The abstractions from the lower level functions of the buzzer. lo
include, in addition, the states of components as
vel as other entities. FUNCTION:

Buzz: TOAE buzzing(buzzer)

At each level of our functional representation 17 pressed(uanusal-switch)*

we propose that there are five significant aspects PIOVIDED assmption2 BY behaviorl

to an agent's knowledge of functioning of devices:
"busz" is the name of the function;

"buzzing(buzzer)" denotes the buzzing state of the
- STRICTUUE: that specifies the components buzzer. "t7" and "t8" are distinguished elements of

(subcomponents) of a device (a component) a component of buzzer (we discuss thi& below).
and the interconnections between them. "aseuptioni" will specify the initial state i.e.,

"t","t8" are electrically connected (more about
- FUNCTION: that specifies WHAT is the assumptions later). The "BY" clause relates the
response of a device or a component to an function with its behavior i.e., the manner in
external or internal stimulus. which the function is accomplished (behavioral

specification is described below). As we shall see ...
BUAVXOK: that specifies HOW, given a in section 4.2, this association between function
stimulus, the response is accomplished, and behavior is important at the compilation stage.

- GENIC KNOWLEGH: chunks of deeper
causal knowledge that have been compiled STRCTIU
from various domains to enable the
specification of behavior of devices and The structure of a device (component) is
their components. For example, a represented using the abstractions of its
specialized version of Kirchoff's law components (subcomponents) and generic relations
from the domain of electrical circuits. between them (such as "serially-connected"). As an

illustration consider the structure of the buzzer
- ASSUNPTIONS: under vhich a behavior is given below:

accomplished.

Next ve describe the roles of these five aspects
in representing the functioning of devices and
their notations. Following De kleer and Brown I,
21, we shall use the household buzzer shown in fig.
3-I to illustrate our ideas.



c) We model interconnections between
STRUCTUE: components by relations such as

COMPUTS: I serially-consected., 'includes', etc.
mural-switch (tlt2), battery (t3,4)..
coil (t5.6,spacel), clapper (t7.tS.space2) BRLVIOa

ELATIOUS: serially-connected (manual-switch,
battery,coil.clapper) Ti

AND includes (spacel, aee) The behavioral specification of a device
describes the manner in which a function is

ABSTIACTIONS-OF-COOIENTS: accomplished by "gluing" together the functions of
COMPONENT clapper (TI,T2.SPACZ) components, generic knowledge, assumptions relating

FUCTIONS: aechaancal,scousticmagnetic to behavioral alternatives, and sub-behaviors. for
STATES: elect-connected (TlT2), example, the specification of of "behaviorl' in

repeated-bit(clapper) fig. 3-2 illustrates how the 'buzz' function

END COuOVKT discussed above is realized.

COHPOlIEIT coil (T1,2,SPACE)

MN CONPONUT
END A STIUCTIONS-OF-COHPONOTS

END STRUCTURE SEW= bevil

"tl",tZ" ...., "space" are distinguished elements
(terminals) of components ; only between Presed (wanu-ditch)*

distinguished elements can relations be defined. I ATbeb,,-o,
"mechnical", "acoustic", etc., are the name of

functions of clapper. These functions ( as well as
the structure, behavior, generic knowledge and (.Isct counected (t., t3); seiec-obneCed (e,. CS))
assumptions relating to the clapper as well as
other of the components) are represented at the USLHG rrCTION Mechsalcal

nezt level of our representation in the same manner OF clapper (ti. t3. sp&C*.)
as the buzzer. The capitalized parameters such as J
TI1,T2,etc., are local to the associated component. aevso-hi (c pper)

It is important to note the following: USING FUNCTION .Acaselc

oF Clapper (t.,. t8. spae.,)

a) A component (subcomponent) is specified
independent of the representation of the Bssing (Clapper)

device (component) vbich contains it. i H
ore specifically, the specification of Suesl±5 (bugter)

a component does not refer to the role
of the component in the composite. Thus
our representation obeys the "no-
function-win-structure" principle of Do vigure 3-2: An Illustration of
kleer and brown (1, 2). Behavioral Specification

b) Not the behavioral specifications of We have made use of five conceptually important
components but only the ames of the notations in behavioral specification. ,They are
functions are carried over to the higher
level. This property is important when described below: .
an asent needs to replace a
malfunctioning component by a 1: sl
functionally equivalent but behaviorally I1
different one. Note that neither the 11 BY <name-of-a-behavior>
"intrinsic mecbanism" nor the "causal V
model" of Do klear and Brown [1] £2
distinguishes between function and
behavior as we do. The "behavioral For example,
description" of Davis at al [131 and
Davis [141 is similar to our functional Pressed (manual-awitch)*
specification. They do not have any 11
construct equivalent to our behavioral II BY behavior2
specification. (The significance of
become clear when we discuss it below.) - elect-connected (t7,t8)

119

•-



This means that the state sl causes the state s2 applied between t5 and t6. This is true as per the
and the details are in another behavioral knowledge chunk called 'knowledgeJ/ when it is
specification ( "behavior2"). This relation applied in the context of battery, coil, clapper
enables the the specification of behavior of a and manual switch being serially connected, and the
component (or a device) at many levels of detail battery makes voltage available at its terminal.
but still at the level of the component (or (The representation of 'knowledgel" is discussed

below.) It is through this primitive that the role
device), of generic knowledge in describing a behavior is

represented.
2: $1

5: magnetized(space2)
1I USING FUNCTION <nam-of-a-funution> I1
I I OF <component> If USING FUNCTION magnetic -

/ l OF clapper(t7,t8,space2)
92 WI WITH asaumption3

For example, Felect-connected(t7,tS)

repeated-bit (clapper)
If USING FUNCTION acoustic "assumption3" will specify that there exists a
11 OF clapper(t7,t8,space2) force P such that if space2 is magnetized, then the S

resulting magnetic force will be greater than
buzzing (buzzer) F. Note that "assumption3" does not specify what is

F, how it is to be realized and so on. The "WITH"
The above notation means that the state s2 is clause, like "PROVIDED", relates an assumption with

caused from sl by making use of a function the state transition. However, "WITH" is different
("acoustic") of the component ( clapper). This from "PROVIDED" since it relates an assumption that
relation makes it possible to glue the functions of is passed from a device (component) to a component
the components together to obtain a behavior. (sub-component) while "PROVIDED" relates the one

from a component (sub-component) to the device
3: (component). Also, assumptions related by "WITR"

Sl = S2 clause can be used to make a state transition
deterministic.

The above notation means that the agent will
"equivalence" the state s of a component (or GENERIC KNOWLEDGE - ....
subcomponent) with 92, the state of a device (or a
component). For example, as in the specification The generic knowledge specification of a device
of "behaviorl" (ref. to fig. 3-1 "buzzing(clapper)" (component) describes all chunks of deeper
is "equivalenced" with "buzzing(buzzer)". Note knowledge used in its behavioral specification.
that without this relation, it is impossible to
connect the result of a function of a component The following is a specification of "knowledgel'.
(the buzzing of the clapper) with the result of a
function of the device (the buzzing of the buzzer GENERIC KNOWLEDGE:
which is the result of its function "buzz"). knowledgel:
Without this connection, "behaviorl" cannot be
claimed to implement the function "buzz" of the voltage-applied (tl,t2)

buzzer. II
I I AS-PER kirchoff's-law

81 if IN-THE-CONTEXT-OF
: sI II elect-connected(tl,t3)

11 ' elect-connected(t2,t4)
If AS-P&R <name-of-a-knowledge-chunk>
}1 IN-THE-CONTEXT-OF < one or more voltage-applied (t3,t4)

of a "relation", "state" or a
s2 "function of a component" > It is worth noting that the specification of

generic knowledge is context-free. The context in
For example, which it is applied is specified in the behavioral

elect-conoocted(07,t) specification (as illustrated above). An we shallIt see soon, there is a mechanism ("REFERENCES") by
which a user task of the functional representation

II AS-PER knowledgel IN-THE-CONTEXT-OF knows where to look for the definition of
11 FUNCTION voltage OF battery(tl,t2), Kircboff's law.
11 serial ly-connected(battrycoil,
V( clapper ,manua l-svitch)

voltage-applied(t. ,t6) We would like to draw particular attention to
the notion of GEERZC KNOWLEDGE in our
representation. This enables us to capture the

This means that if the terminals t7 and t8 are relation between functional representation and
electrically connected, then voltage will be deeper causal knowledge. Moreover, without an

120



explicit link with such generic knowledge it is not 4. Compilation of a Diagnostic Expert
possible to support the recognition of incorrect
application of such knowledge during "envisioning" The principal function of the compiler that we
11,2,31. Also it cannot support queries relating shall discuss here is to generate a diagnostic
to the role of such knowledge in expert from the functional representation. Checking 0
understandingdescribingexplaining,etc., of the the correctness/ consistency of a functional
behavior of devices, representation, optimization of the generated

expert systems are also significant aspects of the

ASSUMPTIONS compilation process. However, for want of space
we discuss here only the generation of an MDZ-like
diagnostic expert. Other aspects of compilation

All assumptions made use of in the behavioral are discussed in (151.
specification of a device (component) are described
in ASSUMPTIONS as illustrated below with reference

to the clapper. 4.1. The Structure of the Generated Diagnostic
Expert System

ASSUMPTIONS:
DEIIITIONS: As shotn in fig. 4-1, the generated expert is a

hierarchy of specialists. Each specialist

fl - magnetic-force DUE-TO magnetized(space) AND corresponds to a malfunction in the device at a

f2 - spring-force DUE-TO loaded (spring) certain level of abstraction. For example, a bad
clapper, bad serial connection, etc. Specialists

ASSUMPTION1: corresponding to more general or abstract

IF magnetized(space) THEN fl > f2 malfunctioning are higher in the hierarchy. For
eample,the root specialist in fig.4-1 corresponds

ASSUMPTION2: to a "malfunctioning buzzer". Its three sub-

IF magnetized(space) TEI fl < f2 specialists correspond to the following three
malfunctions (only the first one is shown in fig.

END ASSUMPTIONS 4-1):

"spring-force" and "magnetic-force" are 1. The buzzer does not buzz when the manual
concepts; we discuss below about their definition, switch is pressed.
The primitive "DUE-TO" relates a concept with a
state of a component. 2. A buzzing buzzer does not stop buzzing

when the manual switch is released.

Note that though De kleer and Brown [21 state S
that a difference between a novice and an expert is 3. The buzzer keeps buzzing independent of

that the latter has made explicit all the the state of the manual switch.

asuimptions underlying behavior of devices, their
causal model, unlike our functional representation -Every specialist has knowledge to establish the

does not represent explicitly the role of associated malfunctioning and to refine it by
assumptions in behavior, calling its sub-specialists. The knowledge of a

specialist is in the form of three types of rules:

R FERENCES confirmatory rules,exclusionary rules and
recommendations. (We will not discuss
"recommendations" here since it is concerned with

Clearly an agent's knowledge of the functioning optimization of the generated expert.) For
of devices will have references to elements of example,
different domains ,e.g., electrical
circuits,electro-masgnecism ,etc. These references IF elect-connected (tl,t2)
are specified in the "REFERENCES" part of our voltage-applied (t0,t6)

THEN confirm
representational scheme as illustrated below: IF voltage-applied (t5,t6) THEN reject

REFERENCES: A malfunction is diagnosed top-down by

FOR kirchoff's-law, elect-connected establishing a specialist and refining the

REFER-TO elect-circuits malfunction represented by Lt by calling its sub-

FOR magnetic-force RZFER-TO electro-magnetism specialists. This discussion of the structuring
and functioning of the diagnostic expert is grossly - S

END REE ENCES simplified. More detailed information can be
obtained from 8, 9 ].

Note that we do not yet know how to represent
domains such as "elect-circuits", "electro-
magnetism", etc.

121



Buzzer

if Preed )mnual-evItcb).
, bus~ing (buzzer)

tY ~ ~ ~ ~ ~ ~ ~ ~~ U confirmieccnnce~t.t) sicofr
MJLSE reject

ELSE srepatedhit (lapper)

THU_ coefirt TiMi onfirm
U.SEE reject

If elc-cneIc-te mtd (C7 * votae-ppie IF5  1e4tc6)td 7 t)
IFetcnece 'eec-tnee (t 7 * Q.tonce~; t8

MENl confirm reeaedhi confpprm

E iLS r rejec AHE ExaponofaGee rte

There ~ ~ ~ ~ ~ ~ ~ ~ ~ ES arrhretpejfmafetinncatFNCI

elc-onetdt ,rse~aulsic) By behaviori-

The7 Spcale associatedte~t7 wtto i

corecty. THEN asocfiate speiais is onficorir
* ~ ~ ~ ~ ~ U celled aLS rejectsk~aL LS ej

Th.r areato ee etyen cofmonentioin mny notTN :t fnto hce geeae saoewl
hec hold. tyesorfxmltebtey oi eatce otero specialist. Atd theE uzigbu

1And a pper mayh note bee cionneted.h compiler usigentae afuclueobtin cekrwth
seilyTe acl he specialist bhvo associated with eac fucininsomie

theA fucion m~ay ot b it.tonn IFore exame, if thebhavio is speczifize i
correctly. ~ ~ ~ ~~ th fo soitdspcaiti r: onir

c.a.Ted aopilation rchecker ELS reject.........-i> s

3.At thelato btee comprnenets the oot Then the fucopilecwill generated ase aofe ni
Sspe hils. Therootaspecilth nateds noioleg becaltse for the foospcion .chec erasite

to estalh it ef at th al th t experit i wthhebehavior.ae wth rues forcthem will bope:
thivo e laatoatically to. the establshmen oftebhairi peiidi

th4 oo.cils. The compilerio thnrocesse IF I1 meo ahE co>n......i-rm o

t the tario tfnction iofrthe ndev e s ot thntecmplrwl generates a eSE reject

function checker corresponding to each function.

For example, given

IF on-l so TREN confirm
ELSE reject

122



For the "buzz" function example given above, nodes corresponding to the above transition. An example
5, 6 and 7 in fig. 4-1 will be generated using of an assumption checker is node 4 in fig.4-l.
"behaviorl" in fig.3-2. Note that the rule

CASE 3: S
associated with node 5 should be:

The state transition
IF pressed(manual-awitch)*
^{elect-connected(t7,t8);"elect-connected(t7,t8))* al

TREH confirm It AS-PER knovledgel
ELSE reject. II IN-THE-CONTEZT-OF s3^s4...sn

\/
However, the condition "pressed(manual-switch)*" is s2 S
not checked since it is done at node 2, i.e., the
parent of the node 5. will result in a set of sub-specialists with the

Further processing of a behavioral specification rules:
depends on the kind of composition of behavior.

CASE 1: IF -s3 THE confirm
ELSE reject "

Assume that node 5 is generated corresponding to IF -s4 THE confirm

the following state transition in fig. 3-2. ELSE reject

Pressed(manual-svitch)*
II &1 on MEN confirm
II SY behavior2 ELSE rejectV

{elect-connected(t7,t8) ; elect-connected(t7,t8)}*

RuNCES
The above state transition will also result in

compiling lBehavior2" as described above, and 1: Do [leer, J., Brown, J.S., "Mental
attaching the generated specialists to node 5. odl of Physical Mechanisms and Their

CASE: 2 Acquisition," in CognLtive Silal pd.
Their gcauisitio, (ed) J.1. Anderson.,

Let the state transition in fig.3-2correeponding Erlbaum, 1981.

2: De Kleer, J., Brown, J.S., "Assumptions
to node 6 in fig.4-l be: and Ambiguities in Mechanistic Mental

Models," tech rept. CIS 9, Xerox Palo
{elect-connectedt7t8); -elect-connected(t7,tS)} 'Alto Research Centers, 1982.

I USING FUNCTION mechanical 3: De Kleer, J., Brown, J.S., "Foundations
OF clapper(t7,t8,space2) of envisioning," Proceed. of AAAI,

repested-hit(clapper) 1982.

After generating the node 6 for the above state 4: Kuipers, B., De [leer and Brown 'Mental
transition, the compiler will look at the function Models', A Critique," TDWPICS No. 17,
IMechanical' in the functional representation of Working Papers in Cognitive Science,
the component 'clapper' and compile the behavior Tufts Univ., 1981.
associated with the function. If there is no
behavioral specification for the function, node 6 5: Sart, P.E., "Directions for Al in the
will be a tip specialist. If there is one for the Eighties," SIGART newsletter, no. 79,
function, then it will be compiled, and the Jan. 1982.
generated specialists will be attached to node 6.
If the function of the component is implemented 6: Michie D., "Righ-road and Low-road
under, say, "assumptionI" and the specification of Programs," A. i azine, 3:1, 1982.aesmptioni" is of the for: _7: Chandrasekaran, B., and Mittal S., "Deep

!F s3 THEM .4 vs. Compiled Knowledge Approaches to
Diagnostic Problem Solving," Prot,

then the additional specialist with the rule Second National AL Conf. AAAI,
Pittsburgh, PA., 1982., revised version

IF s3 - -s4 TE confirm to appear in I Joral oL
ELSE reject _HnA&iacine Studies, 1983.

will be generated and attached to the node 8: Gomez, F. and Chandrasekaran, S..
"[nowledge Organization and Distribution

123



for Medical Diagnosis," IEEE rans.
System Ma SA Cyberntics, SMC-l1:1.
1961.

9: Chandrasekaran, B., "Decomposition of
Domain Knowledge into Knowledge Sources:
The MDX Approach," Proc. of Fourth
National Couf. of Canadian Society for
the Computational Studies Of
Intelligence (CSCSI/SCZIO), 1982.,
Revised in "Towards a Taxonomy of
Problem Solving Types," A
Imaxazie.Winter/Spring , 1983.

10: Rouse, W.B., and Hunt, R.(., "A Fuzzy
Rule-Based Model Of Human Problem
Solving in Fault Diagnosis Task,"
Working Paper, Coord. Science Lab,
Univ. Illinois, Urbana, 1980.

11: Patil, R.S., "Causal Representation of
Patient Illness for Electrolyte and Acid
Base Diagnosis," Ph.D. Dissert., TR-267,
MIT Lab for Computer Science, Cambridge,
Mass., 1981.

12: Pople H.!., "Heuristic Methods For
Imposing Structures On Il1-Structured
Problems," Artificia Intelligence In
Medicin, ed. by Szolovits, Westview,
1982.

13: Davis I., Shrobe H., Hamacher W.,
Wieckert, K., Shirly K., Polit S.,
"Diagnosis Based on Description of
Structure and Function ." Natnl conf. on
Al, 1982.

14: Davis R., "Diagnosis via Causal
Reasoning: Paths of Interaction and the
Locality Principle," Natnl. conf. on Al
,1983.

15: Moorthy V.S., and Chandrasekaran B., "A
Functional Representation of Devices and
Compilation of Expert Problem Solving
Systms", Tech. report, AI group, Dept
of Comp and Info Science, Ohio State
University, Sept.,1983.

16: Chandrasekaran B., "Expert System:
Matching Techniques to Taske", Invited
Presentation at the Newyork Univ.
SymposiI on "Artificial Intelligence
Applications for Business", May 1983.

17: Chandrasekaran B., Mittal S.,
"Conceptual Representation of Medical
Knowledge for Diagnosis by Computer: MDX

and related Systems", in Advances in
Cmputer Vol.,22, Academic Press,Inc.
1983.

ACXNOWLEDGEHETS

Research vas supported in part by AFOSR
Grant 82-0255 and NSF Grant MCS 8103480.

124



APPENDIX

Details of the functional representation of FUNCTION: buzz of the buzzer

NOTE: We have represented below only the buzzer; S
Batterycoil,clapper and manual switch have NOT been represented.

DEVICE buzzer
FUNCTION: 49P

buzz: TOMAKE buzzing (buzzer)
IF pressed (manual-switch)*
PROVIDED INITIAL elect-connected (t7,t8)
BY behaviorl

stop-buzz:TOMAKE -buzzing (buzzer) -0
IF -pressed (manual-switch)
PROVIDED INITIAL buzzing (buzzer)

BY behavior5

STRUCTURE:
COMPONENTS:

manual-switch (tl,t2), battery (t3,t4),
coil (tt6,spacel), clapper (t7,t8,space2) .

RELATIONS:
serially-connected (manual-switch,battery,coil,clapper),
includes (spacel,space2)

ABSTRACTIONS-OF-COMPONENTS: 0
COMPONENT clapper (Tl,T2,SPACE)

FUNCTIONS: mechanical,acoustic,magnetic
STATES: elect-connected (TI,T2),

repeated-hit (clapper)
COMPONENT coil (T1,T2,SPACE)

FUNCTIONS: magnetic _0
STATES: magnetized (SPACE), voltage-applied(TI,T2)

COMPONENT manual-switch(TI,T2)
FUNCTIONS: connect
STATES: elect-connected (Tl,T2),

pressed (manual-switch) 0

COMPONENT battery (T1,T2)
FUNCTIONS: voltage

125ILI



BEHAVIOR:

behaviorl:

pressed (manual-switch)*II 0

I BY behavior2
II

{ elect-connected (t7,t8); elect-connected (t,tW)} *
II
[ USING FUNCTION mechanical OF

II clapper(t7,t8,spacel)
II

repeated-hit (clapper),

I USING FUNCTION acoustic OF

II clapper (t7,t8,space2)
II

buzzing (clapper)III
Ill .

buzzing (buzzer)

behavior2:

pressed (manual-switch)SI I S

1I BY behavior3I I

elect-connected (t7,t8)
II
I1 AS-PER knowledgel IN-THE-CONTEXT-OF -

II serially-connected (battery,coil,

II clapper,manual-switch)

[ I FUNCTION voltage OF battery

'voltage-applied (t5,t6)II_. .

II BY behavior4I I

elect-connected (t7,t8) } *

1?6



behavior3:

pressed (manual-switch)

IIUSING FUNCTION connect OF
I manual-switch (tl,t2)

VI
elect-connected (tI,t2)

IIAS-PER knoviedgel IN-THE-CONTEXT-OF
II FUNCTION voltage OF battery,
II serially-connected Cbattery,coil,
I I clapper,manual-switch)

V 7

voltage-applied (t5,t6)

IIBY behavior4

elect-connected (t7,tB)

behavior4: 1FF

voltage-applied Ct5,t6)

IIUSING FUNCTION magnetic OF
LI coil (t5,t6,spacel)

VI

magnetized (spacel)

IIAS-PER knowledge2 I.N-THE-CONTEXT-OF
II includes (spacel,space2)

VI
magnetized (space2)

IIUSING FUNCTION magnetic OF
II clapper (t7,t8,space2)

V
elect-connected (t7 ,t8)

127



GENERIC KNOWLEDGE:
knowledgel:

Voltage-applied (tl,t2)

AS-PER kirchoff's-law
IN-TRE-CONTEXT-OF
elect-connected (tl,t3),
elect-connected (t2,t4)

voltage-applied (t3,t4)

knowledge2:

magnetized (spacel)

I AS-PER lava-of-space
I I IN-THE-CONTEXT-OF
I I includes (spacel,space2)

magnetized (space2)

ASSUMPTIONS:
DEFINITIONS:

fl- magnetic-force DUE-TO magnetized (space)
f2- spring-force DUE-TO loaded (spring)

assumptionl:
IF magnetized (space) THEN fl > f2

assumption2:
IF -magnetized (space) THEN fl < f2

END-DEVICE buzzer

128

.. . . .. . .. . .. . . . . . .. ... .. .. .. .... ..I m n ... . . .. .. ... . .. . nt .. ..



0

ABOUT THE AUTHORS

V.S. Moorthy received his Bachelor of Engineering from
Madras University in 1967; Master of Technology from
Indian Institute of Technology, Bombay in 1970; and Ph.D. .
from Indian Institute of Technology, Bombay in 1978. He is
currently visiting assistant professor at the Department of
Information and Computer Science, OSU. His current
interests include expert systems, natural language
processing, and programming languages. He is a member
of ACM, SIGART, and American Association for Artificial
Intelligence.

Dr. B. Chandrasekaran is a professor of computer and
information science at Ohio State University where he -
heads a group of faculty and graduate students in 0
knowledge-based systems research. He is supported by
grants and contracts from the National Science
Foundation, Air Force Office of Scientific Research,
Department of Defense, Wright-Patterson Air Force Base,
and Battelle Labs. He has developed a collection of new
ideas for the design of diagnostic systems and designed a
medical diagnosis system called MDX. His group has also
developed CSRL, a family of special knowledge engineering
languages. He is author of over 50 papers and chair of the
IEEE Systems, Man and Cybernetics Society Technology
Communications on Al, as well as associate editor of the
SMC Transactions. _

129



N APPLICATION OF THE CSRL LANGUAGE

TO THE DESIGN OF

EXPERT DIAGNOSIS SYSTEMS:

o THE AUTO-4MC EXPERIENCE

by

Michael C. Tanner and Tom Bylander

Department of Computer and Information Science

The Ohio State University

Columbus, Ohio, USA 43210

November 12, 1983

131



Abstract

Auto-Mech is an expert system which diagnoses automobile fuel systems. Its

organization and strategies are patterned after MDX, an expert diagnosis

system~developed in our AI laboratory. The problems that these systems are

able to diagnose are represented as nodes within a hierarchy. Each node has

knowledge about how to confirm or reject the problem hypothesis, as well as

knowledge about what nodes to consider next. This approach is intended to be

a domain-independent methodology for providing focused problem solving and for

localizing knowledge in a conceptually relevant manner. Auto-Mech is S

implemented in a recently developed language called CSRL, which is

specifically intendtd for building diagnostic expert systems. This paper

describes Auto-Mech and discusses why the MDX approach and CSRL were useful in

developing Auto-Mech, and where some difficulties were encountered. -

1. Introduction

Over the past few years, our AI laboratory has developed an approach to the

design of expert diagnosis systems based on the paradigm of "cooperating

specialists." This approach is exemplified in an expert system called

MDX [3, 6], whose expertise is in cholestatic liver disease. In order to

demonstrate the viability of this approach to non-medical domains, we have

developed a system called Auto-Mech which diagnoses problems in automobile

fuel systems. We show that an organization of diagnostic knowledge which is 0 .

similar to ?MX can be used in this domain to provide focused problem solving,

and to localize knowledge in a conceptually relevant manner.

Auto-Mech is implemented in a recently developed language called CSRL [2),

which was designed specifically for building MDX-like diagnostic expert

systems. Thus another goal of this work was to determine the strengths and

weaknesses of CSRL and to make recommendations for future versions of CSRL.

Briefly, Auto-Mech works as follows. When Auto-Mech begins diagnosis, it -

obtains a specific complaint about the way the car operates. Then general

hypotheses about the nature of the problem are evaluated. When a hypothesis

is confirmed, any hypotheses which are immediately more specific are

considered. The user is queried for additional information as needed during
13

~132



this process. Auto-Mech is not intended to be a complete model of an

automobile mechanic, but is intended to reflect the information procesAng

capability of a mechanic when she attempts to determine the specific cause of

a fuel problem from an initial complaint and from things that a typical

mechanic can observe when she looks under the hood. 0

Before we present a more detailed description of Auto-Mech, we give an

overview of our approach to diagnostic probler solving. We then describe the

program, explaining the assumptions that we have made, and outlining its

organization. An annotated session of Auto-Mech and a sample of its CSRL code .

is included. Finally, we discuss why our approach and CSRL were useful in

developing Auto-Mech, and where sone difficulties were encountered.

2. Introduction to Diagnostic Problem Solving S

The central problem solving of diagnosis, in our view, is classificatory

activity. This is a specific type of problem solving in our approach, meaning

that a special kind of organization and special strategies are strongly

associated with performing expert diagnosis. We will not examine here how

classificatory diagnosis fits in with our overall theory of problem solving

(see Chandrasekarnn (41). Instead, we will briefly overview the structure and

the strategies of classificatory diagnosis. For the purposes of this

discussioi, we will use "diagnosis" in place of "classificatory diagnosis"

with the understanding that the complete diagnostic process includes other

elements as well.

The diagnostic task is the identification of a case description with a

specific node in a pre-determincd diagnostic hierarchy. Each node in the

hierarchy corresponds to a hypothesis about the state of the "patient" (a car

in the Auto-Mech program). Nodes higher in the hierarchy represent more

general hypothesis, while lower nodes are more specific. In medicine, a case

description is the manifestations and the history of a patient, and a

diagnostic hierarchy is a classification of diseases and disease classes. For 5

example, MDX (3, 6] attempts to classify a medical case into a diagnostic

hierarchy of cholestatic diseases. Figure I illustrates a fragment of MDX's

hierarchy. The irost general disease, chclestonsio in this example, is tbe head

133

-9



node of the hierarchy. More specific cholestatic diseases such as extra- 0

hepatic cholestasis are classified within the hierarchy. In the following

discussion, we will use the generic term "problem" rather than "disease".

Cholestasis .0___I \__0

Extra-hepatic Intra-hepatic
Cholestasis Cholestasis

EHC Due to EHC Due to .
Bile Duct Stone Bile Duct Tumor

Figure 1: Fragment of MDX's diagnostic hierarchy

Each problem in the hierarchy is associated with a specialist which

contains the diagnostic knowledge to evaluate the presence or absence of the

problem from the case description. From this knowledge, the specialist

determines a confidence value representing the amount of belief that the

problem exists. If this value is high enough, the specialist is said to be

established. Note that each specialist is a problem solver with its own

knowledge base.

The basic strategy of the diagnostic task is a process of hypothesis

refinement, which we call establish-refine. In this strategy, if a specialist

establishes itself, then it refines the problem hypothesis by invoking its JP

subspecialists, which also perform the establish-refine strategy. If the

confidence value is low, the specialist rejects the problem hypothesis, and

performs no further actions. Note that when this happens, the whole hierarchy

below the specialist is eliminated from consideration. Otherwise the

specialist suspends itself, and may later refine itself if its super.or

requests it. The processing ends (if we assume that only one problem is

present) when a tip node specialist, a specialist with no subspecialists, has

been established.

With regard to Figure 1, the following scenario might occur. First, the

cholestasis specialist is invoked, since it is the top specialist in the

hierarchy. Cholestasis is then established, and the two specialists below it

are invoked. Extra-hepatic cholestasis is rejected, also eliminating MIC due

134

i-



to stone and bile duct cancer from further consideration. Finally, intra- S

hepatic cholestasis establishes itself, and invokes its subspecialists.

Due to space and time limitations, we have not addressed several issues

relevant to diagnostic problem solving (such as handling multiple problems). - .

For a more detailed analysis, see Gomez and Chandrasekaran 15]. Test

ordering, causal explanation of findings, and therapeutic action do not

directly fall within the auspices of classificatory diagnosis, but expertise

in any of these areas would certainly enhance a diagnostic system. Fully

resolving these issues and integrating their solutions into the diagnostic .O

framework are problems for future research.

3. The Automobile Diagnosis Program

3.1. Description of Auto-Mech

Auto-Mech is a program which diagnoses fuel problems in automobile engines.

It was developed using CSRL (which will be described in Section 3.3) and the

establish-refine proble--solving methodology described in Section 2.

One reason the domain of automobile diagnosis was chosen is that most

people feel comfortable discussing car problems thus making such a program

easy to demonstrate. We also had two good amateur mechanics available to

serve as experts. We decided to concentrate on fuel problems because the fuel __

system is sufficiently complex to be interesting and simple enough to do in a

short time.

Before discussing the program further a brief discussion of automobile fuel

systems is in order. The purpose of the fuel system is to deliver a mixture 5 -

of fuel and air to the cylinders of the engine. It can be divided into four

major subsystems:

1. the fuel delivery subsystem which brings fuel from the tank to the

carburetor,

2. the air intake which brings air into the carburetor,

3. the carburetor which mixes the air and fuel in the proper ratio,
and

135

S



4. the vacuum manifold which brings the mixture to the cylinders.

These subsystems correspond to initial hypotheses about fuel system faults and

each can be further refined by more detailed descriptions.

Just as hospitals have a routine series of data to collect about every

patient admitted, Auto-Mech collects a set of initial data to get the

diagnosis running. We refer to the initial data as defining the user's

complaint. The complaint is a problem-condition pair where the problem is the

symptom the user notices (such as stalling or running rough) and the .0

conditions include the kind of driving in which the problem occurs

(accelerating, idling, etc.) and the approximate engine temperature (hot,

cold, or both). Note that the complaint is highly symptomatic.

We chose to implement a program around a generic automobile fuel system

rather than the fuel system of a particular car. Reasoning about the fuel

system depends on its design, which can vary in many ways. Within the CSRL

framework each design requires its own diagnostic hierarchy so we had to make

a few assumptions about the system. The major assumptions are: 0

- carbureted engine

- single barrel, single stage, donidraft carburetor

- mechanical fuel pump

- automatic transmission

- non-computer ignition

- automatic choke

- minimal pollution control systems 0

Each of these assumptions has diagnostic consequences. A carbureted engine,

for example, will have a different set of problems than a fuel injected engine

(the former can have a broken carburetor). Many of these assumptions would be

valid for most cars built before 1980 or so. Those that are not would either - "

add complexity without making the problem more interesting (such as a two-

stage carburetor) or vary so widely that no single generic arrangement can be

imagined (such as pollution controls).

-1



We also made a few simplifying assumptions about the problem solving

required of the program. The most important of these is our single complaint

assumption. This means that for any session with the program the user can

specify only one major complaint (a problem-condition pair as described

above). One difficulty with multiple complaints is the need to keep the 0

problem-condition pairs together. If the complaints were "stalls while

idling" and "hesitstes on acceleration" it would be necessary to know

1"stalls", "hesitates", "idling", "acceleration", and that the complaints are

P not "stalls on acceleration" and "hesitates while idling". The simple data

base provided with CSRL does not provide for this kind of reasoning. This

could be rectified by implementing a special data base. Another difficulty

with allowing many complaints is keeping the line of questioning focused on

one complaint. Given many complaints, large portions of the hierarchy will be

relevant and the questioning may appear random to a user unless some mechanism

is used for focusing the questioning. Such a mechanism was not readily

available. Solving these problems would have either added to the time taken

for the project as a whole or subtracted from the time devoted to the main

purpose of developing Auto-Mech -- to test CSRL and establish-refine problem-

solving. So we chose to restrict the problem-solving to a single complaint at

a time.

Another simplifying assumption we made is that the data to be used by the

system be from couonly available sources. Mechanics now have an array of

computer analysis information available which our experts were unfamiliar

with. So we limited ourselves to such data as whether a component is working

and how the car behaves in certain situations.

Figure 2 shows part of the diagnostic hierarchy for Auto-Mech. Each node 0

in the hierarchy is a specialist representing a hypothesis together with

knowledge about how to confirm or reject the hypothesis. For example, the

specialist named Delivery represents the hypothesis "Fuel delivery subsystem

is causing the problem." Delivery also contains knowledge about the types of

*This is most emphatically no a single fault assumption. If there is more
than one fault causing the complaint, Auto-Mcch can find it.

137

L



S

ENGINE

FUEL

I I I II
DELIVERY MIXTURE VACUUM AIR-INTAKE BAD-GASI I I I I

CARBURETOR-GASKET VACUUM-HOSES

Figure 2: Partial Diagnostic Hierarchy for Auto-Mech

complaints for which fuel delivery problems should be considered and how to

infer that fuel is not being delivered to the carburetor. The purpose of the

top-level specialist, Engine, is to collect the initial complaint information

and begin diagnosis. The ellipsis in the diagram represent points where the .0

hierarchy continues down.

3.2. Annotated Transcript of a Session with Auto-Mech

"In the following transcript of a session with Auto-Mech the user's 0

responses follow the ">" prompt, comments are underlined, and everything else

comes from the program.

The user first tells the t level specialist,,Eaine, to
esta.lish and then refine itself. The proz ?. then prints a 5
brief statement of the diagnostic system's scope and begins
collecting information aboLt the Problem.

>DoCSRL Engine Establish-Refine

This is a program to diagnose automobile problems. At the present
time the the program only knows about fuel problems. The first series
of questions is an attempt to determine what the problem is (starting
problem, rough running, stalling, hesitation, slow response,
knocking), and the conditions under which it occurs (idling, loading,
accelerating, cruising, turning, decelerating, engine temperature).
After this the rest of the questions are attempts to confirm or reject
hypotheses. _

Do you have problems starting your car?>?

Answers:
Y = Yce
N - No

138

D • 0



U Unknown

If the user doesn't know how *to respond, 'T' will provide A
description of acceptable ancwprs. All of the questions in
this progr m are answered "1yes". jjno". or "unknown" for
jimpliicity Z;SRj does provide facilities for usin, any
answers which are Spproprizkte including such things as
numerical va-lues and multiple choice.

Do you have problcms starting your car?>N

Does the car stall?>N

Does the car run rough?>Y

Does the problem occur while idling?>N

Does the problem occur on loading?>Y

Does the problem occur while the engine is both hot and cold?>Y

The problem tbc user has specified is "the enixine runs rouzh
and the conditions -are "on loading and7 independent of. engine
temperature". The only vurnose of the Engine specialist is to
determine the ccrnplaint. Certain terms requice specific
definitions in order to clearly separate somae Problems land
conditions. For P-ample, loadian means Ritti-PI' some strain on
the endne w~ithout acceleatnp. idin men the enin is

runnng ut her isno oadon it.

>>> Message Trace <
From: ENGINE To: FUEL
Message: ((ESTABLISH FUEL))

Engine now refines bM. first telling its subspecialist. Fuel.
to establish.

Have you eliminated ignition as a possible cause of the problem?>Y

This ggjistion Lhows the need to know what other specialists
have done. Auto experts have determined that many problems
which might be fuel problem~s are more likely to hje ignition
Problems. This user's auto complaint is one of those cases so
Fuel wants to make sure lgqinhas l~qc ted itself.

OL ~However, Ignition h'as not been implemented so the user is
asked if the ji'oition syste-n b.s been consi dered and rejected.

>>> Message Trace <
From: FUEL To: ENGINE
Message: ((ESTABLISHED FUEL 2))

139



>>> Message Trace <<<
From: ENGINE To: FUEL
Message: ((REFINE FUEL))

Once its subspecialist. Fuel. estaLishe__ Engine continues to

refine b telling Fuel to refine itself. The next series of
messages and .uestions show the program consiiring, Delivery_

Mixture, Vacuum, Air-Intake, and Bad-Gas as hyotheses about

the cause of the problem. The data base provided with CSRL

records each question asked and the user's answers to avoid

askiiu them a gin. So the decisions the specialists make are
not based entirely on the answers to questions shown under

each specialist, but on cozabinations of the answers to those

and previous answers.

>>> Message Trace <<<
From: FUEL To: DELIVERY
Message: ((ESTABLISH DELIVERY))

Is any fuel delivered to the carburetor?>U

>>> Message Trace <<<

From: DELIVERY To: FUEL
Message: ((REJECTED DELIVERY -2))

>>> Message Trace <<< 0

From: FUEL To: MIXTURE
Message: ((ESTABLISH MIXTURE))

Have you been getting bad gas mileage?>N

>>> Message Trace <<<

From: MIXTURE To: FUEL
Message: ((REJECTED MIXTURE -3))

>>> Message Trace <<<
From: FUEL To: VACUUM
Message: ((ESTABLISH VACUUM))

>>> Message Trace <<<

From: VACUUM To: FUEL
Message: ((ESTABLISHED VACUUM 3))

>>> Message Trace <<<
From: FUEL To: AIR-INTAKE
Message: ((ESTABLISH AIR-INTAKE))

Is the air filter old?>N

>>> Message Trace <<<

From: AIR-INTAKE To: FUEL
Message: ((REJECTED AIR-INTAKE -2))

140



>>> Message Trace <<<
From: FUEL To: BAD-GAS
Message: ((ESTABLISH BAD-GAS))

Have you tried a higher grade of gas?>Y

>>> Message Trace < 
From: BAD-GAS To: FUEL
Message: ((REJECTED EAD-GAS -3))

>>> Message Trace <<<

From: FUEL To: VACUUM
Message: ((REFINE VACUUM))

Fuel now asks its established subspecialists to refine. In
this case only Vacuum has established.

>>> Message Trace <<<

From: VACUUM To: VACUUM-HOSES
Message: ((ESTABLISH VACUUM-HOSES))

Are there any cracked, punctured or loose vacuum hoses?>U

This Question seems strange because it appears to be
eguivalent to a skin. whether the hypothesis stiould be -
confirmed. But when Auto-Hech gets to a very specific
hypothesis usutally the on l data for confirming or rejectin
it cones from direct observation of a part.

Cam you hear hissing while the engine is running?>N

Are the vacuum hoses old?>Y

>>> Message Trace <<<

From: VACUUM-HOSES To: VACUUM
Message: ((UNKNON VACUUM-HOSES I))

The information that Vacuum-Hoses has is not certain some
indicates trouble and some doesn't. So the answer is -• .
"_unknown" but the value "1" indicates that it leans toward
establishi.

>>> Message Trace <<<
From: VACUUM To: CARBURETOR-GASKET
Message: ((ESTABLISH CARBURETOR-GASKET))

Can you see cracks in the carburetor gasket?>Y

>>> Message Trace <<<
From: CARBURETOR-GASKET To: VACUUM
Message: ((ESTABLISHED CARBURETOR-GASKET 3))

141



Here is an example of how the hierarchv sets context for lower
level specialists. The carburetor gasket often appears

cracked or split but does not cause problems. Cracks in it
are thus indicative of trouble only in a context in which a
vacuum leak is suspected.

Is the diagnosis of VACUUM finished?>Y

CSRL and Auto-Mech are unable to determine when diagnosi.s is
finished. The mechanism we use asks the user rs control
passes 2 through the hierarch from the lowest point reached.
If the user answers "Yes as in this case, then control .•
Passes on the hiernrchy_ Another of the user's options
here is to answer "No". In that case CSRL would refine those
subspecialists of Vacuum which were "unknown" such as Vacuum-
Hoses. Unless the prouram is told to do this onlQ
"established" subspecialists will pet refined. In this
particular case the guestion indicate bu g in the Auto-Mech
. Uramitself since Vacuum's subspecialists are all S
specialists.

>>> Message Trace <<<
From: VACUUM To: FUEL
Message: ((ESTABLISHED CARBURETOR-GASKET 3) (UNKNOWN VACUUM-HOSES I))

Is the diagnosis of FUEL finished?>Trce

FUEL-- 2
DELIVERY --- 2
MIXTURE --- 3
VACUUM -- 3

VACUUM-HOSES -- 1
CARBURETOR-GASKET -- 3

AIR-INTAKE -- -2
BAD-GAS -- -3

The user also has the option of print_n out the diagnostic
hierarchy with the values displayed for each specialist.

Is the diagnosis of FUEL finished?>Y

>>> Message Trace <<<
From: FUEL To: ENGINE
Message: ((UNKNOWN VACUUM-HOSES 1) (ESTABLISHED CARBURETOR-GASIET 3)
(REJECTED BAD-GAS -3) (REJECTED AlR-INTAKE -2) (ESTABLISHED VACUUM 3)
(REJECTED MIXTURE -3) (REJECTED DELIVERY -2))

Is the diagnosis of ENGINE finished?>Y

(ANSWER (REJECTED DELIVERY -2)
(REJECTED MIXTURE -3)

142

°-.



(ESTABLISHED VACUUM 3)
(REJECTED AIR-INTAKE -2)
(REJECTED BAD-GAS -3)
(ESTABLISHED CARBURETOR-GASKET 3)
(UIKNOWN VACUUM-HOSES 1)
(ESTABLISHED FUEL 2)
(ESTABLISHED ENGINE 3))

The answer is simoly a list of the specialists which ran and
their valum. The diagnos is thc established tip
specialists L Carburetor-G_;-ket in this case.

3.3. How One of Auto-Mech's Specialists Reasons

Figure 3 shows the CSRL code for implementing the Bad-Gas specialist which

considers the hypothesis "Something wrong with the fuel is causing the

problem." The specialist is defined by the Define-Concept statement. Like

all CSRL specialists it is made of three parts:

- Declarations, containing information about where the specialist fits
in the hierarchy.

- Knowledge-Groups, showing the major categories of decisions to be
made.

- Bcdy, which controls the way in which the specialist responds to 1
various messages.

The boldface represents built-in CSRL. primitives, everything else is

determincd by the system builder. And-YNU is a three-valued logical AND which .0

is defined for Y, N, and U. Use-Declaration and Use-Statement invoke CSRL

macro-instructions that expand into longer sequences of statements which do

not vary from specialist to specialist. The Use-Declaration's here set up

standard variables and constants for the CSRL interpreter to use. The Use-

Statement's implerient the establish-refine problem-solving process. Since the

interesting thing is how Bad-Gas establishes or rejects itself, we will not

discuss these other processes here.

The general description of how Bad-Gas reasons is:

First make sure Bad-Gas is a relevant hypothesis to hold. If it is
not then reject. If it is relevant find out if there is any reason to
believe something has happened to the fuel recently. If there is none
then reject. But if there is some reason to believe this then
establish with value deponding on how relevant the hypothesis is.

143

_9



(Define-Concept Bad-Gas

(Declarations (Subconcept-Of Fuel)
(Subconcepts Low-Octane

Water-In-Fuel

Dirt-In-Fuel)
(Use-Declaration Usual-Variables)

(Use-Declaration Usual-Constants))
(Knovledge-Groups

(Relevant
(Options (End-After (match 1)))
(Table (Conditions

(Ask-YNU? "Is the car slow to respond")
(Ask-INU? "Does the car start hard")
(And-YNU
(Ask-YNU? "Do you bear knocking or pinging sounds")
(Ask-YIU? ".'oes the problem occur while accelerating")))

(Match (If ( Y ? ?) Then -3)
(If (? Y ? )Then -3)
(If ( ? Y Y ) Then 3)
(If (? ? ?) Then 1))))

(Gas
(Options (End-After (Match 1)))
(Table (Conditions

(Ask-YIfU? "Have you tried a higher grade of gas")
(Ask-YNU? "Did the problem start after the last fillup")
(Ask-YNU? '"as the problem gotten wor;e since the last

fillup")) 0
(Match (If ( Y ? ? ) Then -3)

(If ( ? Y ? ) Then 3)
(If ( ? N Y ) Then 2)
(If (? ? ? )Then-3))))

(Summary

(Options (End-After (atch 1)))
(Table (Conditions Relevant Gas) - ,

(Match (If ( 3 (Ge 0) ) Then 3)
(If ( 1 (Ge O) )Then 2)
(If ( ? (Lt 0) ) Then -3)))))

(Body
(Use-Statement Usual-Establish-Refine)
(Message-Block (Establish Self)

(Execute Relevant)
(Case Relevant

((Ge 0)(Execute Gas Summary)
(Establish-Reply Summary))

(Otherwise (Establish-Reply Relevant))))
(Use-Statement Simple-Refine)
(Use-Statement Pass-Messages)))

Figure 3: CSRL code for a specialist

144

0



To implement this Bad-Gas has a group of statements in the Body which begin

(Message-Block (Establish Self) ... )

and which will be activated when a message to establish is received from the

Fuel specialist. The Message-Block controls the order in which the

Knowledge-Groups (Relevant, Gas, and Summary) are evaluated. Summary combines

the results of Relevant and Gas. The

(Execute Relevant)

statement causes the Relevant knowledge-group to run. If Relevant returns a

non-negative value the Gas and Summary groups run with the establish-value of

Bad-Gas set by Summary. If Relevant returns a negative value the establish-

value of Bad-Gas is set by Relevant and the other two groups are not run.

This choice is implemented by the construct:

(Case Relevant
((Ge 0) ... )
(Otherwise .)-

Very detailed descriptions of how all of the knowledge groups work is not

necessary. In general, running a knowledge-group consists of testing its

Conditions and trying to match their results to one of the rows in the Match

table. A condition which begins with Ask-YNU? causes CSRL to look in its

. string-value data base for the given string. If found then the value stored

there becomes the value of the condition. If not found, the string is

displayed as a question to the user. The user's response is stored in the

string-value data base and is used as the value of the condition. If the

condition is the name of a knowledge-group its value is the value of the .

knowledge-group. The rows (or "rules") of the Match table are tried one at a

". time, from the top down. As soon as a row is found which matches the value of

the conditions, the Then-part gives the value of the knowledge-group and the

evaluation of the knowledge-group stops. The "?" in the tables is a wild-

CSRL can be viewed as a restricted object oriented language in which the
objects are the specialists and the messages are instructions to the
specialists.

145



S

card, it matches any value.

In the transcript given earlier the value of the conditions in the Relevant

knowledge-group are (N N N) so the row g
If ? ?) Then I

matches and the value of Relevant is 1. This is a result of the previously

supplied information that the complaint is "runs rough on loading" combined

with the single complaint assumption. As a result Gas and Summary are run.

The value of the conditions in Gas are (Y - -), where "-" signifies "did not

ask", and the row

If (Y 7 ?) Then -3 -* ....

matches. This is the result of asking a question of the user. So now the

values of the conditions for Summary are (1 -3) which matches

If (7 (Lt 0)) Then -3

and the value of Sum~mary is -3, causing Bad-Gas to reject.

For more detail about CSRL see [2) and [1].

3.4. Usefulness of CSRL in Developing Auto-Mech 41

One of the first things we noticed in using CSRL is that the internal

workings of a specialist and the overall problem-solving method is easy to

explain to a computer-naive expert. Establish-refine seemed to be a natural

way for the experts to solve the problems and was not in any way imposed upon

them. The specialists in the diagnostic hierarchy of Auto-Mech represent the

hypotheses considered by the experts during the solution of practice problems.

The experts quickly understood the CSRL specialists and could point out flaws

in their reasoning during debugging sessions.

*Our experts were Ph.D. students in Nuclear Engineeriag, they were not
computer specialists and knew very little about AI.

146

oS



Another helpful feature of CSRL is that it makes it easy to get something

running quickly. This gives the experts a chance to actually run the program

to see the results of their suggestions. It is much easier for experts to

help debug a running program than to debug a paper construct. CSRL makes

possible the development of partial systems, the obvious evidence for which is 0

that we can develop a fuel system program without being concerned with the

rest of the car. Much of this is due to our approach to diagnosis in which

knowledge is localized within specialists and the interaction among

specialists is simple and well-defined. Concerns about global interaction of

knowledge are minimized. Changes in the Delivery specialist will not affect

any other specialists in the hierarchy (except for the context assumed by its

subspecialists, an easy thing to check). So if Vacuum works right but

Delivery has bugs in it, fixing Delivery will not affect Vacuum. This greatly

simplifies building and debugging a system over the traditional knowledge-

base/inference-engine approach.

Auto-Mech consists of 34 specialists in a hierarchy which varies from four

to six level: deep. Four people were actively involved with its development, -

two computer specialists and two domain experts. The total labor was

approximately five man-months of which about 30% was domain expert time. The

project extended over nine calendar months.

3.5. Some Difficulties ..

CSRL was built to embody a theory of diagnosis which was developed in the

medical domain. The diagnostic reasoning of an automobile mechanic, however,

is slightly different from that of a doctor. Once a hypothesis is confirmed a

doctor will carefully consider the competing refinement hypotheses and follow

up on the best. This is the behavior modeled by the establish-refine theory.

* But an auto mechanic seems to follow up the first reasonable refinement.

Auto-Mech does not capture this latter behavior. It could be done in CSRL,

though it would be a little more difficult to do than using the standard

establish-refine routines. The end result of diagnosis in both cases is the

same, but presently Auto-Mech seems dumb to an expert since it is being more

*careful than necessary.

147



Mechanics usually do not go straight into the kind of diagnostic reasuning

which requires a diagnostic hierarchy. The complaints are associated with

typical maintenance or repair procedures as a result of the training or

experience of the mechanic. An example of this is:

Temperature dependent problems (those that happen only when the
engine is cold or only when it is hot) are usually caused by a
malfunction of the choke. So for those problems first check to see
that the choke works correctly and if it does not than fix it. Also,
since you have to go past the air filter to get to the choke, make
sure the air filter is good.

Only after all the applicable procedures like this get tried does the mechanic

do the more serious diagnosis done by Auto-Mech. This process is outside the

scope of both CSRL and the establish-refine theory but it is actually only an

efficiency measure. The final diagnoses using the mechanic's method and using

establish-refine are the same, with establish-refine possibly doing more work.

One of the problems we had in developing Auto-Mech is that we could not

treat establishing a specialist, or confirming a hyrothesis, as indicating a

high degree of belief in the hypothesis. Sometimes in Auto-Mech a specialist

establishes because it is not possible to reject it and one of its

subspecialists may be able to establish. So during diagnosis, when a

specialist establishes it really means "this hypothesis is worth pursuing."

This is mainly due to the type of domain that we were working uith. Most of 0

the data used by Auto-Mech are very weak at indicating specific problems.

Data that are direct are usually about tip hypotheses and of the form "is xxx

working correctly." Thus the specialists which rely on indirect data are

unable to produce high confidence in their associated hypotheses, although

they can still determine a "pursuit value." The theory of establish-refine .

problem solving, which CSRL is based on, needs to be modified to take this

into account.

The question of when to stop is a difficult one for diagnosis in general.

Htman experts have the concept of a diagnosis "explaining" the data and that

certain data must be explained while other data need not be. Automating this

decision has proven to be difficult, though it seems clear that it is not a

decision appropriately made by the diagnostic expert itself but rather by some

148



outside entity having additional knowledge and skills. This is why CSRL

currently asks if the user is satisfied as control passes back up through the

hierarchy. However, in the automobile domain the system should recommend

fixing the problems represented by established tip specialists and then ask if

the problem persists after the repairs are made. The answer to that question S

could be data for another round of diagnosis. Once again, this could be fixed

within CSRL (the problem arises from the built-in Simple-Refine macro which

was designed to be very general and would need to be customized for Auto-

Mech).
0

In the establish-refine theory of diagnostic problem-solving, diagnosis is

seen as an iuherently parallel process [5]. All specialists at a given level

in the hierarchy may be active simultaneously. These specialists communicate

their status (established or rejected) to each other via a blackboard. This

makes it possible for a specialist to know what another specialist has done.

Sometimes this knowledge is necessary, as can be seen in the example session

given earlier where the Fuel specialist wanted to know the status of the

Ignition specialist. CSRL is presently implemented as a serial language

without a blackboard. This leads to some occasional awkwardness as the Fuel 0

specialist's question to the user shows.

Another feature of establish-refine theory is that it is strictly a theory

of classificatory reasoning and that other kinds of reasoning are needed to do

diagnosis. In particular inferential reasoning about data is needed. For

example, if the user's problem is one which involves the engine running then

the system should know that there is fuel in the tank even if that piece of

data is not explicitly given to it. This is reasoning about relationships

betweeti pieces of data and is not classificatory in nature. In MDX there is S

an intelligent data base component, called PATREC [6, 7], for doing such

reasoning about medical data. CSRL is intended to be used for the diagnostic

component and so it does not contain an intelligent data b -. Since this

component is absent in Auito-Mech, we have had to clutter our diaguostic

specialists with data base reasoning.

149

_S



• i

4. Summary and Recommendations

The relative length of the "difficulties" section compared to the

"usefulness" section is due to the need for additional programming and the

CSRL language rather than deficiencies in the theory of diagnostic problem- 0

solving. The difficulties point to some recommendations for improvements in

CSRL:

I. Changes from the standard control flow should be easier to make.

Presently all hypotheses at one level are tried before going down
to the next level. The control needed by Auto-Mech is a natural S
complement to this -- pursue the first reasonable hypothesis.

2. CSRL needs a more flexible facility for determining when to stop

than simply asking the user. System builders may have ideas on how
to do it for specific problems without necessarily being able to
solve the general problem of deciding when diagnosis is complete. -

3. Since CSRL is to be used for building diagnostic experts it should
provide a facility for limited communication between specialists

across the hierarchy, such as a blackboard. Such a facility would

be useful even if CSRL remains a serial language.

Our other problems were the result of things which it ,ould not be appropriate

for CSRL to address since they are outside the scope of classificatory

diagnosis. These include the intelligent data base and the execution of

typical maintenance procedures prior to diagnosis.

Overall CSRL was a very useful tool for developing a diagnostic expert _

system. It was easy to explain to an expert, the specialists were fairly easy

to write based on protocols, and a partial system could be running quickly for

debugging purposes. CSRL was also easy to use from a programmer's point of

view.

Auto-Mech does not verify the validity of establish-refine problem-solving

but it does demonstrate that establish-refine is a viable method for doing

diagnosis. It is a natural way for experts to solve problems. The hypotheses

they consider can be used as specialists within the diagnostic system. The

localization of knowledge proved to be useful for development purposes.

150

"i



UI U - -- *I.I- .

Acknowledgments

We thank B. Chandrasekaran for his guidance and support during the course

of this project. We also wish to thank Jiten Ruparel and Siavash Hashemi who

served as our domain experts and Sriram Mahalingam who helped think out the

problems associated with building Auto-Mech. Research on diagnostic expert

systems for the domain of mechanical systems is supported by the Air Force

Office of Scientific Research grant 82-0255.

References

1. T. Bylander. The CSRL Manual. in prep.

2. T. Bylauder, S. Mittal, and B. Chandrasekaran. CSRL: A Language for
Expert Systems for Diagnosis. IJCAI-83, 1983. -•

3. B. Chandrasekaran, F. Gomez, S. Mittal, and J. W. Smith. An Approach to
Medical Diagnosis Based on Conceptual Structures. IJCAI-79, 1979.

4. B. Chandrasekaran. "Towards a Taxonomy of Problem Solving Types." AI
Magazin. 4, I (Winter/Spring 1983), 9-17. •

5. F. Gomez and B. Chandrasekaran. "'nowledga Organization and Distribution
for Medical Diagnosis." IEEE Trans. 1&C SMC-l, I (January 1981), 34-42.

6. S. Mittnl. Design of a Distributed Medical Diagnosis and Database System.
Ph.D. Th., Dept. of Comp. and Info. Sci., The Ohio State University, 1980.

7. S. Mittal and B. Chandrasekaran. "Conceptual Representation of Patient
Data Bases." J. of Medical Systems (1981).

151

L •



ABOUT THE AUTHORS

Michael C. Tanner is a doctoral student at Ohio State
University. He received a B.S. in mathematics education
and his M.S. in computer science from OSU. In addition to
expert systems, his interests include learning, psychology,
and computer graphics. He is an advisee of Dr.
Chandrasekaran and has been working for him as a
graduate research assistant for a year.

-S
Tom Bylander is a doctoral graduate student in the
Computer and Information Science Department at Ohio
State University. He received his B.S. at the University of
South Dakota and his M.S. at OSU. His dissertation .
research is concerned with commonsense reasoning about -
physical systems. Other interests include expert systems
and linguistics. He is currently an advisee of Dr.
Chandrasekaran and has been working for him as a
graduate research assistant for the past 2 years.

152

S



An Expert Sem for Representing

QProcedural Knowledge
a..

' Michael Georgef"f

Artifcial Intelligence Center

SRI International
333 Ravenswood Avenue
Menlo Park, Ca., 94025

Abstract

--Q Development of effective automatic systems for fault isolation and diagnosis requires

reasoning about scquences of tests and actions. Unfortunately, traditional expert systems

are not well suited to representing such procedural knowledge. In this paper, a scheme is

presented that allows the explicit representation of both declarative and procedural knowledge

within a unified framework, yet retains all the desirable properties of expert systems such

as flexibility, explanatory capability and extendibility. In particular, the scheme allows any

heuristic declarative knowledge that maintenance engineers may possess to be integrated easily

and uniformly with the strong procedural methods of maintenance plans. Domain-specific

metalevel knowledge can also be represented within the same formalism. A simple version of

the scheme has been fully implemented and applied to the domain of automobile-engine fault

diagnosis.

§1 Introduction

Maintenance teams play a very important role. in military operations. However,

maintenance technicians often lack the engineering knowledge necessary for effective fault

diagnosis of technologically-advanced equipment. Sometimes, operational conditions may be

such that it is simply not possible to provide sufficient maintenance support. It is therefore

essential to automate as much of the fault-diagnosis process as possible.

153



-* . . - ... 7 ,.w -

The current approach is to provide automatic test equipment to guide technicians

through a prespeciflied sequence of tasks, with the system making predefined decisions on

the basis of the incoming data. This reduces the number of errors made in executing the

maintenance procedures and frees the technicians from performing complex arithmetic and 0

algebraic calculations.

However, the use of automatic test equipment as currently implemented is limited.

The equipment is inflexible and insensitive to the skill level of the engineers using it. Such 0

systems cannot modify their diagnostic procedures to match the requirements of the current

situation nor can they accept potentially useful advice from technicians. Because these systems

perform a prespecified sequence of tests, they cannot use knowledge of the particular situation

to focus attention on more likely trouble spots. Consequently, turn-around time is high, and

this is of critical importance under battle conditions. Further, the development cost of test

software is large and time to maturation is lengthy.

These difficulties are unlikely to decrease with time. Advances in technology tend to

make equipment more complex, rather than less. Operational scenarios are becoming more

demanding, with the need for high sortie rates, very mobile units, and dispersed operations.

Neither is the recruiting base likely to increase, and so far there is little evidence to suggest that

the aptitudes or educational level of trainees are increasing. Even if they were, none but the

most experienced and highly-educated engineer could be expected to understand adequately

the functioning of advanced military equipment.

The design of current automatic test equipment is inadequate to meet these problems.
What one really requires is a fault-diagnosis system that can effectively increase the expertise

of the maintenance team, thereby minimizing referrals to senior engineering personnel and 0

reducing the time taken in diagnosis. The system needs to be ftexible and responsive to changes
in conditions. It must focus on the problem at hand by opportunistically using knowledge and

must interact with technicians in a way that uses their skills to maximum effect.

_0

Such systems would enable effective fault isolation in conditions where it is not possible

to refer problems to senior engineers (as in submarine operation, small in-field air support, and

satellite applications), or where, because of mobility requirements, it is not possible to provide

sufficient maintenance personnel. They have the potential for greatly reducing the time taken

154

0



in fault diagnosis, and thus can provide a significant military advantage. Furthermore, the

provision of additional expertise at a high level of competence enables problems to be correctly

identified in the field rather than at a service depot, thus reducing logistics problems.

Recently, significant advances have been made in providing systems with just this sort

of reasoning ability. Such systems are known as expert ltems or knowledge-tbsed systems.

These systems utilize the knowledge of experts to reason about problems in the domain of

interest in much the same way as the experts themselves. They have the ability to explain

their reasoning to the expert or user, and can incrementally acquire new knowledge. They are

flexible, can respond opportunistically to incoming data, and can modify their behaviour under

variant conditions. •

However, most of these systems are not well suited to problem domains where much

of the expert knowledge is procedural and where tests and actions need to be carried out in a

particular time order. Yet, this is exactly the type of knowledge that is common to the problem

of fault diagnosis in complex military machinery.

In this paper we describe a scheme for ezplicitly representing procedural knowledge

while still retaining the benefits of traditional expert systems. The basis of the scheme is to use

a representation that is sufficiently rich to describe arbitrary sequences of actions in a simple

and natural way, while at the same time avoiding explicit procedure 'calling'. The scheme

also provides a mechanism for reasoning about the use of this knowledge, thus enabling fault

isolation to proceed in an effective way. Systems that are based on this scheme are called

procedural expert eyetems [Georgeff 831.

§2 Knowledge of the Domain

The major consideration in choosing a system architecture suitable for interactive

fault diagnosis of military equipment is that much of the domain knowledge is represented

procedurally. These procedures reflect knowledge about operational conditions, usage and

experience with similar equipment, best engineering judgment, technical edicts, and economic

considerations. The procedural nature of this knowledge is critical both to the conclusions -0

made and to the efficiency of fault isolation.

155

IJS



Some of this knowledge is set down in the maintenance plans for the equipment under

test. Some, also, is part of the general technical expertise of experienced maintenance engineers.

It is clearly desirable that a maintenance system utilize both these sources of knowledge.

2.1 The Knowledge Represented in the Maintenance Plan 0

The maintenance plans for most military equipment include extensive instructions

describing tests to perform and actions to carry out dependent on the outcome of the tests.

Most are written as a sequence of steps in English, including conditional statements, 'go to '

statements, and transfers to specialized procedures. For example, a sample portion of the

maintenance procedure used for testing the proper functioning of the F404 engine on the PA-18

aircraft is given in Table 1.

Some of the procedures are necessary to establish certain conclusions (i.e., the conclu-

sions are contest dependent or time dependent), and would be invalid if the procedures were not

carried out in the order specified. For example, in Table 1, confirmation that all vibrations are ..

less than 0.5 in/sec. (step B-9b) must be done after engine speed is stabilized if any conclusions

based on this information are to be valid. Similarly, the time at which unusual noises are

observed (e.g., step B-10b) is critical in determining the cause of any fault.

Other procedures reflect ease of maintenance, or tradeoffs between the likelihood of

a particular component being faulty and the ease with which it can be examined or replaced.

For example, it might not be necessaru to check the setting of the fuel bypass button at the

same time as checking the lube bypass button, but, as both buttons are adjacent to each other,

it is sensible to do so. Similarly, checking the absence of fluid leaks (step B-10a) is done after

deactivating the starter because it is both easiest and sufficient to do so then.

On the other hand, some information, particularly cautionary advice, needs to be - 0 _

made known at any time a particular condition is observed. For example, the cautions on

reactivating the starter need to be advised at any time the engine is running and there is a

possibility that the engineer will attempt a restart (step B-10). Also, some steps need not be

done in the exact order specified in the maintenance plan (e.g., steps a, b and c of step B-9).

156

• 'o. .0



2.2 The Knowledge of Expert Maintenance Engineers

Much of the knowledge of expert maintenance engineers is declarative in nature, and,

indeed, it is this component of expertise that most expert systems set'i to utilize. For example,

a typical piece of such knowledge might be:

"If there is oil on top of the engine housing, then it is likely that the seal on the oil-pressure

sensor has failed."

However, a considerable part of maintenance expertise is also procedural in nature.

Much of this is reflected in the procedures described in maintenance plans. However, an

engineer's knowledge is usually more flexible than the strict algorithmic form of maintenance

procedures. Also, it is often based on functional considerations rather than being specific to

a particular engine. For example, in attempting to isolate a fault in an electrical system, a

typical procedure is the feed-device-ground strategy [Feureig 831: the expert focuses on the

device, considers its input and output behavior, tests it using alternate feeds and grounds, and, . S

depending on the outcome, moves along the feed or ground chain to another device.

Skilled maintenance engineers also know when to apply a piece of knowledge, such as

when to terminate a diagnostic test if some particularly unusual fact suggests an alternative .

hypothesis. Such utilitarian knowledge, often called metalevl knowledge [Davis 761, is very

important in enabling faults to be isolated in a reasonable amount of time.

2.3 The Representation of Maintenance Knowledge

The procedural knowledge typical of the maintenance domain is often difficult and

cumbersome to describe using traditional expert systems, which encode most of their knowledge

in declarative form. Even though some procedural knowledge can be incorporated in these

systems, it is there only because the interpreter executes the rules procedurally in some specified

order. This means that procedural knowledge and the establishment of contexts in which a

particular inference is valid can only be represented implicitly in the system (e.g., by ordering

the clauses of a premise and thus ensuring a particular sequence of evaluation).

This can create dependencies and interrelationships that tend to make the knowledge

base not quite as modular or fexible as perhaps was originally intended. Because of the

157

• _ ............ ... . . . . . . . . .. .. . . .. . . . . . . .. . .. .



homogeneity of the rule representation, it is not possible to distinguish between those rules o

for which the order of invocation is important and those for which it is not. This is not only

bad methodology, but it impairs the explanatory capability of the system and reduces the

possibilities for efficient implementation on multiprocessor machines. 0

Note that we are not saying that such knowledge cannot be represented declaratively

- all we are saying is that, in some domains, it cannot easily or naturally be so represented,

which complicates the construction of the expert system and reduces its explanatory capability.

These problems have encouraged some researchers to investigate ways of representing

procedural knowledge explicitly [Genesereth 82, Georgeff 821. In the simplest cases, special

mechanisms are introduced, such as heterogeneous sets of rules that are dissimilar in nature

from the rest of the knowledge base (e.g., the therapy rules in MYCIN [Shortliffe 1976), or

precedence relations, which require that certain rules be invoked before others (e.g., "contexts'

in Prospector [Rebob 19811). Alternatively, specialist procedures may be used for certain

sections of the problem-solving process. Some more general schemes have also been attempted

[Reinstein 81, Aikins 83). However, these approaches are either not sufficiently general to

express procedural knowledge of any complexity, or tend to destroy many of the desirable

properties of the system, such as flexibility, explanatory capability, and the ease with which -

new knowledge can be integrated incrementally into the existing knowledge base.

This suggests that a new form of expert system is required that allows for a more

direct and explicit representation of procedural knowledge than provided by previous expert

systems. Procedural expert systems [Georgeff 83, Bonollo 83) are one such approach.

13 Procedural Expert Systems

The basic structure of a procedural expert system (PES) is similar to that of most

rule-based expert systems. That is, it consists of (1) a knowledge base for storing informa-

tion about both the problem domain and the specific problem being examined and (2) an in-

ference mechanism for manipulating this knowledge [Buchanan 82). The knowledge base itself

comprises a data base containing faets about the problem and a set of specialized inference

procedures called knowledge areas (KA).

158



A knowledge area consists of an invocation pert and a 6ody. The invocation part

provides information on the utility of the KA, and may include cost estimates and conditions

on both currently known facts and currently active goals. The invocation parts of the KAs can

thus be used to reason about which KAs are potentially useful in solving the problem at hand. 0

The body of a KA can be viewed as a specialized inference procedure. In essence, it is

simply a procedure that establishes sequences of subgoals to be achieved (facts to be discovered)

and draws conclusions (establishes other facts) on the basis of achieving (or not achieving) these -

subgoals.

In order to aid in the construction of procedural expert systems, a system called

Peritus has been implemented [Bonollo 83). Although we will not discuss this system in any

detail, for most of the examples we will use an actual example from an automobile engine

fault-diagnosis system constructed using Peritus.

3.1 Representing Procedural Knowledge

In a procedural expert system, procedural knowledge is specified by using a recursive

transition network (RTN). The arcs of the RTN are labeled with predicates (tests) and functions

(actions), in much the same way as for an augmented transition network (ATN) [Woods 1970).

A given arc of the network can be traversed only if the predicate labeling that arc

evaluates to "true". All traversable paths in the RTN are explored, beginning at a specified

start state and ending at a specified final state. (This is unlike the procedure adopted for ATNs,

which exit as soon as one path has been traversed to the final state.) The order in which

the paths are explored should be considered as undefined (i.e., the validity of the inference

procedure should not depend on this ordering). However, in the implementation described in

this paper, paths are explored in a depth-first manner.

A typical KA body is shown in Figure 1. "Start' is the start state and "cnd" the

final state of the network; the tests on arcs are indicated by a '. Now if, for example, all the

arc tests evaluated to "true," the transitions trl, tr2, trg, tiv, and tr& would all be made, and

the actions 02, as, a4 and as all executed, in that order, before the KA exited. If, on the other

hand, test t2 fails, then only the transitions tri and tr& would be effected, and only action as

would be executed.

159



The functions and predicates labeling the arcs of the RTN can be any computable

functions or predicates. in the Peritus system, these are specilled in LISP and can make use of

variables local to the KA. Free variables are not allowed.
0

There is also a special class of functions and predicates that access the data base and

add new facts to it. Some of these predicates ask whether certain facts are true or not, and

will set up subgoals to ascertain these facts if they are not currently known (i.e., not currently

in the data base). Similarly, some of the functions labeling the arcs may draw conclusions that

add facts to the data base, thus making it possible for previously requested subgoals to be

achieved.

For example, consider the following procedure for isolating an electrical-system fault

in an automobile engine that will not start [Gregory 1980]:

Spark-plug test: Disconnect a spark plug lead and see if a spark jumps to the cylinder head

on attempted engine start. If the spark is satisfactory or blue, then the spark

plug may be faulty. If the spark is absent, weak, or yellow, proceed to the

next test.

Coil-lead test: (Instructions on how to test the spark from the coil) If the spark is satisfactory

or blue, proceed to the next test. If the spark is absent, weak, or yellow, then

the low-tension circuit is suspect; proceed to the low-tension test.

Distributor test: If there is evidence to suggest that the high-tension leads from the distributor

are not operating properly, conclude that they may be faulty. If the high-

tension leads appear to be in order, conclude that the distributor may be at

fault.

Low-tension test(lnstructions about how to perform this test) If a test lamp lights on the

ignition side of the coil but not on the distributor side, conclude that the

coil and/or the coil lead may be faulty. If the test lamp doesn't light on the

ignition side of the coil, conclude that the low-tension circuit may be faulty.

A KA corresponding to this procedure is shown in diagrammatic form in Figure 2.

There are a number of things to note about the body of this KA (we shall consider the invocation
part later). First, when facts are required to be established (e.g., as in 'spark is satisfactory

or blue") other KAs may be invoked to ascertain this information. In this case, an "ask-user"

160

o-S



KA might be invoked, but, in general, many KAs might respond before the fact is established

(as might be the case, for instance, in checking the status of the high-tension leads).

Second, although this KA uses a simple tree structure, the RTN formalism can also

represent other control constructs, including iteration and recursion. Such control constructs

are needed when it is desired to examine different instances of a given object type. For example,

we might have a KA (or KA uschema7) for determining whether or not a single spark plug

is faulty. This KA would be invoked whenever a goal was set up to determine the status of

some particular spark plug. However, by using iteration (represented as a loop in an RTN), we

can also set up this goal for any arbitrary number of spark plugs in the engine, thus creating

multiple instances of the spark plug KA. The ability to explicitly establish goals in this way

can be very useful when one wishes to examine different instances of a given object type in a

specified order (e.g., such as testing the spark plugs in firing order) or when a certain conclusion

depends on interactions among instances.

Third, note that the KA given in Figure 2 is applicable to a wide class of engines, 0

and not just one particular configuration. In general, the system can base its reasoning on

structural models of the device, and use ugeneric" KAs rather than specific ones. For example,

the feed-device-ground strategy mentioned in Section 2.2 can easily be represented as a KA.

3.2 Represcnting Utilitarian Knowledge

The invocation part of a KA provides domain-specific knowledge on the utility of the

KA and can be used by the system in deciding which KA to invoke next. Such knowledge

can be utilized directly by the interpreter, or, in a more general system, by metalevel KAs to

constrain and order the application of object-level KAs. 0

In the current implementation, the only knowledge provided in the invocation part

is a statement describing what gee. (hypotheses) the KA is useful for investigating or what

facts (new data) the KA is useful for explaining. An invocation part consisting solely of a

goal statement results in standard goal-directed invocation, whereas a fact statement results in

standard data-driven invocation. For example, two simple KMs from the automotive domain

are shown in Figure 3. In Figure 3(a), the KA is goal-directed and corresponds to a standard

MYCIN-like rule. This KA will be invoked only if seme current goal is to identify a fuel-system

161

... ... . . . .. .



problem, and the required information is not currently known (i.e., in the data base). Invocation

of the KA will then test whether there is reduced fuel low in the fuel pump, possibly invoking

other KAs to ascertain this. If reduced fuel low is concluded, the (singlel arc of the network

can be traversed and the fuel system problem identified (with some degree of certainty) as 0

being a choked suction line.

An example of a data-driven KA is given in Figure 3(b). Note that the test in the body

of the KA seems redundant in this case, as the KA would not have been invoked if it had not 0

already been known that the oil was contaminated with water. However, it is important from

a methodological point of view to require that the body of a KA be valid irrespective of the

invocation criteria. Under these conditions, if the inference procedures forming the bodies of

all the KAs in the knowledge base are consistent, the system will be consistent. The apparent

inefficiency of having to check the data base twice for (in this case) the condition of the oil can

be eliminated during a compilation stage.

KAs can also be partly goal-directed and partly data-driven, as is the case for the

KA shown in Figure 2. It will be invoked if one of the current goals is to identify an ignition

fault, and it is noticed that one of the trouble symptoms is that the engine does not start. The

system can thus be opportunistic in the sense that KAs might be invoked because certain facts .0

are noticed during an attempt to establish particular goals.

In a more general version of the system, any utilitarian knowledge could be incor-

porated in the invocation part. This could include information on the costs and benefits of _

using the KA, the worst case or average time to diagnosis, probability of success, etc.

8.3 The Inference Mechanism

The system's main task, at a particular point in time, is to discover all it can about

the current goals by executing relevant KAs. To do this, an invocation mechanism is called - ..

implicitly by the currently executing KA when some currently unknown fact is requested or

when some new conclusion is drawn. The mechanism examines the invocation part of all

instance# of the KA occurring in the knowledge base to decide which ones are potentially

useful. These KM are then executed or invoked in turn until either they have all been executed

162

t -9



or a definite conclusion has been reached about one of the current goals on the goal stack.1

The invocation mechanism is outlined in Figure 4. The set S is initialiaed to contain

all relevant instances of the KAs occurring in the knowledge base. The function *elect(S) :

[destructively) selects an element p from the set of applicable instances of KAs S. and ezecute(p)

executes the body of p.

Execution of a KA body consists simply of traversing the body of the KA, as described S

in Section 3.1. In fact, Peritus actually compiles the networks into LISP code, in a manner

similar to ATN compilers (see [Bonollo 831). This makes the system much more efficient than

if KAs were evaluated interpretively.

It is important to note that, although the body of a KA sets up sequences of goals to

be achieved, it may be that, during its execution, some data-invoked KA suggests an alternative

hypothesis and thus changes the course of events. Progress through the original KA is then

suspended and will only be resumed when the alternative hypothesis has been investigated. If

we had more control over the selection of tasks (say, by using metalevel KAs), the currently

executing KA could also be suspended simply because other goals (hypotheses) became more

interesting. Thus, it is preferable to view KA bodies as placing conetroints on the sequencing of 0

goals, while not precluding the possibility that certain observations may (at least temporarily)

interrupt this sequencing.

§4 Time-Dependent Domains and the Frame Problem

In many maintenance domains, tests and actions may dynamically alter the state of 0

the world. This means that conclusions reached at one stage of the diagnosis (e.g., when the

engine is running) may not hold at another stage (e.g., when the engine is stopped). How to

decide what is true in one situation, given what was true in a previous situation, is an old

problem in artificial intelligence and is known as the frame problem (e.g., see [Doyle 801).

1ln the current implementation, the invocation part only contains information regarding the goal and fact
contexts in which the KA is likely to be useful. This information is used solely to determine the set of useful
KAs, not to order them. However, as mentioned above, the invocation part can readily be generalised to 0
include additional information, which could then be used either by the interpreter or by metalevel KAs to
guide and control invocation more effectively.

163

Jt 0



The KAs of procedural expert systems provide a means for directly representing the 0

effects of events and actions in a time-dependent domain. Each node in the body of a KA

can be considered to represent a particular "situation' or state of the world at a given time

instant. Arcs represent transitions from one situation to another. Because arbitrary tests can •

be included on the arcs, which new situations are reached can be conditional on quite complex

events (e.g., upon how long the engine has been running, or whether the vibrations have been

steadily decreasing over the last 10 minutes).

The inference mechanism used in procedural expert systems solves a number of prob-

lems in a relatively straightforward way. The bodies of KAs and their history of invocation

provide an explicit record of the inferences and computations made, and thus explicitly repre-

sent the data dependencies. This enables the basis of beliefs to be examined and, if necessary,

to be updated in a way that maintains the consistency of the entire system (e.g., see [Doyle

7gJ). It also provides a foundation for a rich explanation system.

Default knowledge can be explicitly represented as "default' KAs that allow inferces " e

to be drawn in the absence of counter-evidea ce. For example, assume that some KA needs to

know the quantity of oil in the engine. Assume, further, that this information is not known in

the current situation, but the knowledge base contains a KA that allows the system to infer -

the likely value from knowledge of previous situations:

"If, in some previous situation es, the oil quantity was q and in situation #2 the oil

consumption rate was r, then it is likely that, in the current situation, the oil quantity is

q - (r X t), where t is the time interval between the occurrence of situation s, and the current

time."

If the oil quantity and its rate of consumption have been previously determined, the

above rule enables the system to infer the likely quantity of oil at the present time without

having to ask the engineer. If subsequent predictions do not match with the available data, then

the data dependencies can be examined and the possible invalidity of this inference detected.

If necessary, the engineer can then update the data base by actually measuring this value.

Thus, depending on the likelihood of such default rules being valid, the user is, to a

greater or lesser extent, relieved of the task of having to continually update the database as

events modify values of quantities and the truth of propositions. This is very important, as the ft

164

_-_



number of measurements a technician must make is a strong determinant of the time taken in

fault isolation.

i5 Conclusions

Fault isolation and diagnosis require a high degree of procedural knowledge, as well as

knowledge of a more declarative kind. Procedural expert systems appear to provide a means for S

representing both these forms of knowledge without sacrificing any of the desirable properties

of traditional expert systems.

There are a number of important features of procedural expert systems that are "1

critical to achieving this. First, KAs are not directly 'called", but are invoked only when they

can contribute to finding some current goal or when some particularly relevant fact is observed.

As KAs cannot be directly called, neither can they directly call any other KA. They thus serve

only to specify what goals are to be achieved and in what order. Second, the system is, in

general, nondeterministic, and any number of KAX may be relevant at any one time. These

properties enable the knowledge base of the system to be modified and augmented without

forcing substantial revision.

Furthermore, the representation of inference procedures in the form of augmented

RTNs is simple and homogeneous, which aids both in the acquisition of knowledge and in

verifying correctness. This simplicity also aids the system in explaining its reasoning. In the

simplest case, the goal stack can be traversed to answer "how" and "why" questions (as in

MYCIN-like systems). But, by tracing the bodies of the KAs as well, the system can also

describe the context in which hypotheses are being explored. This kind of explanation is not

deep, but the formalism itself does not preclude the development of a richer explanation system.

The procedural control component is also very general, allowing, at one extreme,

the construction of purely declarative programs, while, at the other extreme, it allows purely

deterministic procedural programs. In particular, the scheme allows any heuristic declarative

knowledge that maintenance engineers may possess to be easily and uniformly integrated with

the strong procedural methods of maintenance plans.

The fact that the knowledge representation allows the specification of procedures _ _

means that the inference mechanism of the system can itself be written by using the same

165



- II -w - o

representation. For example, the description of the current invocation mechanism given in

Figure 4 is already in this form. In this way, knowledge about how best to use object-level KAs
can readily be encoded as metalevel KAs, thus allowing utilitarian expertise to be explicitly

represented.

The generality of the invocation scheme makes it possible for the system to pursue

a diagnosis in a goal-directed way, yet react opportunistically and change the direction of

the consultation if an event occurs that suggests an alternative diagnosis. In fact, after using

primarily goal-directed systems like MYCIN, the way in which data-invoked KAs suddenly wake

up and begin exploring alternative diagnoses was a constant surprise (not always pleasant).

The representation is also suited to dynamic domains where the state of the world is

influenced by events and actions. The body of a KA can then be viewed as specifying how and

under what conditions one situation changes into another. This capability is not only important

in the maintenance domain - it is also critical in areas such as battlefeld assessment and pilot

!. assistance, where choice of action is strongly dependent on external events.

There are a number of questions that still remain to be answered, and this will require

further experimentation with the system. For example, the representation of temporal domains

needs to be properly formalized, and suitable techniques for truth maintenance developed. .

Further, the implemented system, Peritus, contains limited information in the invocation part,

and this could usefully be extended. The incorporation of metalevel KA also needs to be

explored.

Acknowledgment

The author wishes to acknowledge the contribution of Umberto Bonollo in helping

clarify the ideas presented in this paper.

166



References -

[Aikins 83) Aikins, J.S., 'Prototypical Knowledge for Expert Systems,; Artificial Intel-
ligence, Vol. 20, pp 163 - 210, 1983.

[Allen 811 Allen, J.F., "A General Model of Action and Time," Comp. Sci. Report

TR 97, University of Rochester, N.Y., 1981.

[Bonollo 831 Bonollo, U. and Georgelf, M.P. "Peritus: A Knowledge Engineering Tool for
the Development of Procedural Expert Systems,' Comp. Sci. Tech Report
39, Monash University, Melbourne, Australia, 1983.

[Buchanan 821 Buchanan, B.G., and Duda, R.O., *Principles of Rule-Based Expert Systems,'
Report HPP-82-14, Heuristic Programming Project, Stanford University,

Stanford, Ca., 1982.

[Davis 76] Davis, R., "Applications of Metalevel Knowledge to the Construction,
Maintenance, and Use of Large Knowledge Bases," STAN-CS-7-552, HPP- S

78-7, Stanford University, Stanford, Ca., 1978.

[Doyle 79) Doyle, J., *A Truth Maintenance System,' Artificial Intelligence, Vol 12,
" 1979.

[Doyle 801 Doyle, J. and London, P. "A Selected Descriptor-Indexed Bibliography to
the Literature on Belief Revision," Al Memo 8, MIT-Al Lab, Mass., 1980.

(Feurteig 831 Feureig, W. 'An Expert System for Training Automotive Ignition Trouble-
shooting, this volume.

[Genesereth 821 Genesereth, M.R., and Smith, D.E., "Metalevel Architecture," Memo HPP- -

81.6, Stanford University, Stanford, Ca., 1982.

[Georgeff 82] Georgeff, M.P., "Procedural Control in Production Systems,' Artificial

Intelligence, Vol 18, pp 175-201, 1982.

(Georgeff 83) Georgeff, M.P. and Bonollo, U. "Procedural Expert Systems,' Proc. 8lk

Intl. Joint ConJ. on Artificial Intelligence, Karlsruhe, Germany, pp 151-
187, 1983.

(Gregory 80 Gregory's SP Manual No. 165: Falcon - Fairmont XD Series 6 Cylinder
Service and Repair Manual, Gregory's Pub. Co., Sydney, 1980.

[Reboh 811 Reboh, R. "Knowledge Engineering Techniques and Tools in the Prospector
Environment,' Tech Note 243, Artilcial Intelligence Center, SRI intl.,
Menlo Park, Ca., 1981.

[Reinstein 81) Reinstein, H.C. and Aikins, J.S., 'Application Design: Issues in Expert

System Architecture," Proc. 7th Int . Joint Conf. on Artificial Intelligence,
Vancouver, Canada, pp 888 - 892, 1981.

(Shortlife 76 Shortliffe, E.H., Computer Based Medical Consultations: MYCIN, American
Elsevier, New York, 1978.

[Woods 70 Woods, W. A., "Transition Network Grammars for Natural Language
Analysis," Comm. ACM., Vol. 13, 1970.

167

i~



B. Initial Rollover

1. Starter air pressure at 0 PSI.

2. Shafting oil mist system in operation

3. PLA at 0 degrees (stopeocked)

a. Set E-put multiplier to 1.4286 for NL and 4.1910 for NH

4. Fuel pressure at 6-50 PSIG

6. Ignition in *OFF* position

6. a. FVG actuator fully retracted at 0 degrees
b. CVG actuator fully retracted at -3.6 degrees .o

7. Activate the rollover switch and slowly increase starter air pressure
NOTE: Record time from speed indication to positive EOP indication

I| (30 seconds max.)

8. Increase starter air pressure to obtain 6360 +- 60 RPM NH

CAUTION: Do not rollover for more than 30 seconds without the
fan rotation to avoid number 4 bearing over-heating

9. When speed is stabilized:
a. Confirm EOP is 10 PSID main.
b. Confirm all vibe are less than 0.6 in/sec
c. Confirm 0 fuel low
d. Record: NL, NH, WFTI, FVG, CVG, EOP, starter pressure, all vibs

10. De-activate the starter

CAUTION: Do not re-activate the starter before engine has
come to a complete stop

a. Enter the cell: Confirm no leaks (fuel, lube, VEN hydraulic)
b. Check the coastdown and listen for unusual noise
c. VG angles must be ful closed
d. Check oil tank sight gauge. Record results on Log Sheets

11. Top off the engine oil system per Section II. Record net amount
added. If the amount exceeds 4 quarts, repeat the rollover and top off.
If more than 1 pint is required, notify Engineering

Table 1. Section of the Maintenance Plan for the F404 Engine.

168

r " . . .



f" KA 00. 32

INVOCATION: GOAL(IGNITION FAULT IS?) AND FACT(TROUBLE SYMPTOM IS NO-START)

BODY:

TRUE ?

PRINT SPARK-PLUG-TEST

" ! SPARK IS WEAK,

TI? YELLOW OR ASSENT ? SPARK IS SATISFACTORY

OR BLUE

PRINT COIL-LEAD-TEST

S2 TR 2  
,

T2 ? '(:!SPARK-PLUG FAULTY ?
COIL-SPARK IS SATIl- "%..

A2  FACTORY OR BLUE ? COIL-SPARK IS WEAK,
YELLOW OR ABSENT?EN

I N PRINT LOW-TENSION-TESTT4 \ 3HIGH-TENSIN LEADS '

NOT FAULTY ?
TS HIGH-TENSION C)

T4? 3 ? LEADS FAULTY ? CONCLUDE IGNITION

* FAULT IS DISTRIBUTOR ~ / TEST-LAMP LIGHTS ON(CF - 0.9) IGNITION SIDE AND DOES NOT
\ ATEST-LAMP LIGHT ON DISTRIBUTOR SIDE?DOES NOT LIGHT

) 
OLON IGNITION SIDE?

CONCLUDE IGNITION FAULT
IF IS COIL (CF 0.8);

CONCLUDE IGNITION FAULT IS CONCLUDE IGNITION FAULTI LOW-TENSION CIRCUIT IS COIL LEAD (CF - 0.5)

END
FIGURE 1 A TYPICAL KA BODY FIGURE 2 A SAMPLE KA FROM THE AUTOMOTIVE DOMAIN

INVA ON. 4 U A CURRENT GOAL
INVOCATION: GOAL(FUEL-SYSTEM FAULT IS ?) EFINITELY KNOWNBODY: x 0

CONDITION CONCLUDE FUEL-SYSTEM NO CURRENT GOALN

FUEL FLOW?-FAULT IS CHOKED SUCTION
LINE (CF - 0,S)

S :- ALL RELEVANT KA,
b A GOAL-OIRECTEO KA

INVOCATION: FACT(OIL CONOITION IS WATER-CONTAMINATEO) PTY?
.oOY: NOT EMPTY?

ROIL CONDITION IS CONCLUDE ENGINE FAULT ,--/(E.. _WATER-CONTAMINATEO ? IS HEAD GASKET (CF - 0.6) ! | P:, SELECT (S);

(b) A DATA-DRIVEN KA ENDUTE(P )

FIGURE 3 SOME SIMPLE (As FROM THE AUTOMOTIVE DOMAIN FIGURE 4 THE INVOCATION MECHANISM

169

I 0



0

ABOUT THE AUTHOR

Dr. Michael Georgeff is a Research Computer Scientist in
the Artificial Intelligence Center at Stanford Research
Institute (SRI) International. Currently, his research
interests include multi-agent planning, expert systems,
search techniques, and programming languages.
Previously, he held a position at Monash University
(Australia) as Head of the Department of Computer
Science. Dr. Georgeff received a Ph.D. in aeronautical ,
engineering from Imperial College, London.

-

170



S

q~j. 0

FAILURE DETECTION PROCESSES

BY PATTERN RECOGNITION
AND EXPERT SYSTEMS

--
L.F. Pau, Battelle Memorial Institute,

7, route de Drize, CH - 1227 Carouge, Switzerland

SUMMARY 0

7" This paper analyses the failure diagnostic processes involved in automatic

testing, automatic imaging inspection and more general technical diagnostic
systems. It is shown how properly selected pattern recognition methods,

artificial intelligence procedures, and relational data base search schemes, must

be assembled to achieve operational requirements which these diagnostic systems

must meet. This paper will indicate some basic design and selection criteria,

and outline how it can be simplified in a number of practical cases. It will also

describe the corresponding failure diagnostic system architecture.

1. INTRODUCTION

The basic troubleshooting process includes failure detection, localization,

diagnostic, analysis and monitoring [1]. The key element is failure diagnosis
which carries out a breakdown of the observations y 4. Y (signals, images,

text, alltogether) into individual failure modes E0 , El, ... , EN, where E0 is

the no-failure operating mode. Each diagnostic strategy S, is a sequential

search decision process:

D x I x Y ->(t, T(t)) t Eo ...E , EN)

171



where the diagnosed failure mode It must minimize either of the average risks,

error probability, and/or failure diagnosis delay, and:

D functional decomposition of the system under test (modules, logic

states, etc.).

I learning information data base (operational environment, failure

events, maintenance actions, etc.).

y (ya, yP) diagnostic observations derived from passive sensors (YP)

and active sensors (Ya) interacting with the system under test.

These observations include signals, images, logic variables, and

text.

T action required on the system under test, owing to the diagnosis It

(repair, reconfiguration, test generation).

2. ASSUMPTIONS

This paper essentially assumes the intrinsic weakness of the defect or process

modelling approach of the various failure modes. It also accepts the inaccuracy

of most physical device models in failed conditions, and even in nominal

conditions.

The case where failed or nominal conditions are known with good confidence

will be accounted for by a simplifying truth maintenance procedure on the

limited subset of such conditions.

In this paper, we claim that there is robustness to be expected from the

combined use of a learning information data base I (domain dependent), and of

a set of diagnostic meta-rules S (domain independent). This robustness is in

terms of failure diagnosis correctness, and also of efficient automatic test
(ageneration (Y ). At the same time, we here claim that one cannot separate the

diagnostic inference and failure recognition into two separate expert systems,

with one for test generation and the other for failure detection. The diagnostic

inference unit described below carries out both in an intertwinned fashion.

172

7



3. DIAGNOSTIC SYSTEM ARCHITECTURE

The overall diagnostic system architecture (see Figure 4) includes knowledge

representation, inference, decision and action steps.

3.1 KNOWLEDGE REPRESENTATION F

This includes a list frame data structure F, with an associated vector of

attributes A(F), building together a script (F, A(F)).

3.1.1 LIST FRAME DATA STRUCTURE F

The system under test is represented by a nested set of decision tables EC i  ,

constructed starting with the basic modules and linked in a hierarchical tree

structure.,U.U.--*i-i'0

93 No OUTPJU A A I

So UTPUTI2. To NEXT -

a2 N0ou1FSE~5 OUTPUT A 7-LMU= NO = oouT'-0-spe¢
I1 NO 1FP9CT ' ' "L. .. **"

24a

INPUTS OUTPUTS PARTS

FIGURE 1 - DECISION TABLE C. FOR ITEM i

These decision tables represent jointly the effects of inputs, outputs, and

structure, and are nested together as indicated in Figure 2.

173



NXT HIGHER

E7 NO OUTPUTS LEVEL

E6 NO SIG & TLM(lk)-
ES NO TLM-2 OUTP-

6w E4 NO TLM-1 OUTP

E3 NO SIG OUTPUT-

E2 OUT-OF-SPEC-

El NO EFFECT-

I., U

00 0 0;- 0-
t2n - 1 000=0000O)o 0.)O

i n

I zZZOZ ......
www .w uuw

INPUOT OUT,- CIRCUI I ICIT2 - JK

III

CIRCUIT I (C1 )
in in

ES NO OUTP A & 0 -T I u.
£4 No OUTP S -.

93 NO OUTP A

u OUT OF SPEC - - -

IE NO EFFECT

CIRCUIT C2  CIRCUiT CN -

in

INP OUJTP ,iAiTS

FIGURE 2 - NESTING LIST STRUCTURES

174

. - L



The result is a nested list structure L (C 1 , .. , CN ) amenable to efficient list

processing and predicate verification, made of the all horizontal and vertical

labels in said decision tables, organized into inputs, outputs, structure: Li .

Lo, Ls . As some inputs are test stimuli, while other outputs are only

measurements, the diagnostic measurements Ya, yP are merged into these lists,

regarless of observability or not.

This list frame structure obviously encompasses both signals, images, text and

logic variables in the diagnostic observations Y.

175



3.1.2 ATTRIBUTES A(F)

These attributes are made of:

I Attribute labels In the decision matrix, expressing labelled values for each

(row, column) pair element in the list structure; this accounts for structural

attributes, e.g.:

+ Open mode + Open/Short mode

+ Short mode + Output
Intersection

+ Intersection and 44 Failure at one or the

open mode other intersections, not

both at the same time "

FIGURE 3 - STRUCTURAL ATTRIBUTES IN L
sD

iI Measurement attributes, which are the values of all measurement
Y = (ya yp),

whether signals, text, images or logic relations.

IS

I and alterflativel

FIGURE 4 - DIAGNOSTIC SYSTEM ARCHITECTURE

176

INERNC .



3.2 LEARNING DATABASE I

This database specifies the operating environment, component characteristics,

operating modes, normal reference images, and required actions. It is organized 0

in declarative form, and decomposed into open worlds. A natural language

interface is possible to outside users.

3.3 DIAGNOSTIC META-RULES S .

This unit specifies in predicate form the three basic diagnostic and test

generation strategies identified in earlier research: failure mode removal by

analysis, validation, and exploration of the operational envelope. It also carries

out an arbitrage between these strategies. This unit is domain independent,and

has been developed as such.

3.4 TEST GENERATION T

The estimated failure mode I triggers the specific types of probing energy

applied to the system under test (sensitizing probing, deterministic, random).

Thus the meta-rules S must include test generation. .

3.5 FAILURE DIAGNOSTIC PROCESS "

This process is here decomposed into:

i diagnostic inference, . .

ii failure mode recognition,

as described below.

177

-7



4. DIAGNOSTIC INFERENCE EXPERT SYSTEM

This domain independent expert system, geared towards analysis, assembles

scripts (F, A(F)), where F is a frame data structure with all knowledge stored

together, and A(F) the vector of attributes of this frame. It produces from

there attributed features (X, A(X)), while excluding contradictory information

by proof of hypothesis, and obtaining a pre-diagnosis by using S and I. This

expert system must operate efficiently (time, memory size) with domain

dependent knowledge in F, and is activated by a control structure D with

propagating constraints. As a consequence of these requirements, semantic

networks and simple frames cannot be used.

When the inference unit questions I, D and Y, one faces all the problems of a

non-monotonous logic, with new axioms added through Y which may be .0

inconsistent with the current theory as Inferred. Frame axioms to describe

transitions from one situation to another cannot be used, because the failure

modes which may occur are unknown. Therefore, the best approach, as we

have chosen it, is a truth maintenance system (mode Eo), where the truth -

values are scalar functions of the attribute values A(F), with backtracking to

rules explaining the contradictions, and inclusion of these rules among the

features X.

The diagnostic inference thus includes the following steps: t

1) restrict modules M o (IxDxS) candidates for confrontation;

2) confront these modules as selected to the current situation Y, by checking

on preconditions in IxD: this involves checking a predicate formula in the "

first order logic by a saturation procedure;

3) select the features X from the modules as selected by the diagnostic

meta-rules S, which further eliminates some modules according to their

hierarchy. This hierarchy expresses causality relations, failure mode

propagation, and time constants.

178

.L o



7S

5. FAILURE MODE RECOGNITION

This Is carried out by a domain dependent combined syntactic-semantic

approach [2] based upon an attribute grammar with semantic decision rules.

The grammar is G (VN, VT, P, S), where the production rules are of the

type N e a, N E VN, a C- (VT U VN)*, with attribute vector A(a). These

attributes are those derived in the diagnostic inference from the feature

vectors X. The feature X representing the frame F, is applied to the semantic

discriminant functions Ci(.) and F E t = Ei such that Ci(X) = Max C.(X), 

0 S j S N. Alternative decision rules, and examples of attribute features A(a)

are given in [1]. The alternative diagnoses to I are those failure modes whose

attributes yield similar values of C.(X) close to Ci(X).

The attribute grammar G allows to combine data in the frame F processed by

the expert system, coming from signals, images, text, and logical predicates

(e.g. lengths, angles, texture features, amplitudes, boundary shapes, auto-

regressible features). By using here attributes features A(a) with continuous

values, we avoid the need to quantify the attributes A(F) in Section 4. The

semantic discriminants also assist in the sensor fusion, by allowing for

statistical vs. syntactic tradeoffs in terms of combining the attribute values.

The list structure of Section 3.1 gives a simple grammar G, which is of a ""

regular type, for which inference should not be a major obstacle for a known

list' structure F.

6. CONCLUSION

The above framework serves as a unification for a number of past or on-going

projects in failure diagnosis and automatic imaging inspection. By unloading

the domain dependent aspects into a few units, this approach has helped sub-

stantially in reducing the time required for the design of solutions to a number

of practical problems.

179



REFERENCES

0

I1] L.F. PAU, "Failure diagnosis and performance monitoring", Marcel Dekker,

New York, 1981.

(2] K.S. FU, "A step towards unification of syntactic and statistical .0

recognition", IEEE Trans., Vol. PAMI-5, No. 2, 200-, March 1983.

(3) R. DAVIS, "Diagnosis based on description of structure and function",

Proc. National Conf. on Al, Pittsburgh, Pa, 1982, 137-142.

[4] D. Mc DERMOTT, R. BROOKS, "Arby: diagnosis with shallow causal

models", same as [3], 278-283.

10

180



IhOf GUIDON

(V) William J. Clancey
Stanford University

0k GUIDON is an intelligent computer-aided instructional (ICAI) program for teaching diagnosis, such as
medical diagnosis. The program is general. Without reprogramming, the program can discuss with a
student an), diagnostic problem that it can solve on its own. Moreover, by substituting problem solving
knowledge from other domains, the program can immediately discuss problems in those domains. This .
power derives from the use of Artificial Intelligence methods for representing both subject material and •
knowledge about how to teach. These are represented independently, so the teaching knowledge is
general. There are teaching rules and procedures for: determining what the student knows, responding to
his partial solution, providing hints, and opportunistically interrupting to test his understanding. Ex-
perience with GUIDON reveals the importance of separating out casual and strategic knowledge in order
to explain diagnostic rules and to teach a reasoning approach. These lessons are now guiding the
development of new representations for teaching. .

GUIDON, a program for teaching diagnostic replaced by diagnostic rules for another problem
problem-solving, is being developed by William J. domain.
Clancey and his colleagues at Stanford University. The large and complex MYCIN knowledge base
Using the rules of the MYCIN consultation system provides a unique opportunity to apply and extend
(Shortliffe, 1976) as subject material, GUIDON ICAI technology for student modeling and mixed-
engages a student in a dialogue about a patient initative dialogue. GUIDON is designed to explore two
suspected of having an infection. In this manner, it basic questions: First, how do the problem-solving

teaches the student about the relevant clinical and rules, which perform so well in the MYCIN con-
laboratory data and about how to use that information sultation system, measure up to the needs of a tutorial
for diagnosing the causative organism. GUIDON's interaction with a student? Second, what knowledge
mixed-initiative dialogue differs from that of other about teaching might be added to MYCIN to make it 0
ICAI programs in its use of prolonged, structured into an effective tutorial program? MYCIN's rules
teaching interactions that go beyond responding to the have not been modified for the tutoring application,
student's last move [as in WEST_(Burton and Brown, but they are used in new ways, for example, for
1979) and WUMPUS (Goldstein, 1979)] and repetitive making up quizzes, guiding the dialogue, summarizing
questioning and answering [as in SCHOLAR (Car- evidence, and modeling the student's understanding.
bonell, 1970) and WHY (Stevens, Collins, and Goldin, Several design guidelines for the rules make it
1982)]. plausible that the rules would be a good vehicle for

MYCIN's infectious-disease diagnosis rules con- teaching. First, they are designed to capture a
stitute the skills to be taught. As applied to a particular significant part of the knowledge necessary for good
problem, the rules provide GUIDON with topics to be problem solving. Formal evaluation of MYCIN
discussed and with a basis for evaluating the student's demonstrated that its competence in selecting an-
behavior. GUIDON's teaching knowledge is wholly timicrobial therapy for meningitis and for bacteremia
separate from MYCIN. It is stated explicitly in the is comparable to that of the members of the infectious- . .
form of 200 tutorial rules, which include methods for disease faculty at the Stanford University School of
guiding the dialogue economically, presenting Medicine (where MYCIN was developed; see Yu et al.,
diagnostic rules, constructing a student model, and 1979). Second, flexible use of the rule set is made
responding to the student's initiative. Because of the possible by the provision of representational
separation of teaching and domain knowledge, metaknowledge, which allows a program to take apart
MYCIN's infectious-disease knowledge base can be rules and to reason about the components (this

knowledge describes the number and type of
arguments of primitive functions in the rule language).
Finally, MYCIN's rules, in contrast with Bayesian
programs, are couched in terms familiar to human

Revised article reprinted with permission from The Handbook of Artificial Intelligence, ..
Vol. II, A. Barr and E. A. Feigenbaum (Eds.), William Kaufmann, Inc.Q1982. All

rights reserved.
181

+ • .



0

experts, so it seems likely that reading back MYCIN's INTERACTION WITH GUIDON
line of reasoning to a student might be helpful to him An essential part of tutorial dialogue management is
(or .her). allowing the studen" to express himself. In a mixed-

After a brief overview of MYCIN, this article initiative program, provision must be made for every
discusses the following aspects of a GUIDON tutorial kind of initiative on the part of the student. This in- _
dialogue: cludes referring back to an earlier topic to provide S

I. The nature of the interaction more details, changing the topic, requesting case data,
2. The components of the student model posing a hypothesis, asking for help, and so on. We
3. The organization of teaching knowledge into might summarize this by saying that we must allow the

discourse procedures student to specify what he knows, what he wants to
4. The use of the student model know more about, and what he wants to ignore. The
5. Opportunistic tutoring annotated protocol excerpted below illustrates
6. Pedagogical principles behind the tutoring rules. GUIDON's flexibility in responding to the student's

The capability of GUIDON to tutor from a library of initiative. To this point in the dialogue, the student has

cases and for domains outside of medicine is also been given basic data about the patient. He has already

discussed. The final section outlines the lessons determined that the patient has an infection, has

learned about knowledge representation that are being evidence that it might be meningitis, and is trying to

applied to reconfigure the MYCIN rule base for its use determine what is causing the meningitis ("the type of -

in ieaching. the infection"). Student input (indicated here by **) is S
in the form of commands from a menu, discussed
further below.

The student asks for the data and subgoals relevant to
Overview of MYCIN the topic being discussed. These are extracted from

MYCIN's rules.
MYCIN is a program that was developed by a team **Factors S

of physicians and Al specialists. The program was The following factors will be useful to determine the type of
designed to advise nonexperts in the selection of the infection:
antibiotic therapy for infectious diseases. The 3a. whether the meningitis is partially treated
knowledge base consists of approximately 450 rules 3b. whether a lumbar puncture has been performed on
that deal with diagnosis of bacteremia, meningitis, and Pt538

3c. the duration of the neurological signs
cystitis infections. The rules are applied by backward 3d. the CSF protein
chaining, working from high-order goals, such as () 3e. whether Pt538 has a rash consistent with Herpes
"Determine whether the patient requires treatment," Zoster
down to more specific subgoals, such as "Determine GUIDON keeps track of what has been discussed,
whether the patient has high risk for tuberculosis." MYCIN's use of data, and conjectures about what the
These goals and subgoals become the "topics" of a student knows.

dialogue with GUIDON. A typical rule is, roughly Factors marked with (*) have already been stated. Based on

stated, "If the patient has been receiving steroids, then what we have already mentioned, you should be able to
hsatedk"fo therculsiehs benngieisincseid." The conclude about: 3b.
his risk for tuberculosis meningitis is increased." The The student asks how a particular datum is useful. He is
rules are modified by a certainty factor (CF), in- given the case-specific information and then a summary
dicating the rule author's degree of belief, on a scale of its use in the rule or rules that apply in this case
from - I to I that the conclusion holds when the (negative conclusions are omitted here because the
premise is know to be true. (In the GUIDON excerpts choices are mutually exclusive).
shown below, the CFs are shown in paientheses, e.g., 00 Use3c
"(.95).") In a MYCIN consultation, the rules are The duration of the neurological signs is 7.2 hours. -

chained together, working downward from the high- Using other information available to you now, the duration
order goals. The program asks a queston when it needs of the neurological signs enables you to conclude that the

more case data to apply a rule. Thus, a tree of goals type of the infection is bacterial (.2) viral (.2) [RULE524].
and rules is constructed: The goals are OR nodes (any The student indicates that he has determined a par.

ticular subgoal. As described in this article, a "discourseof a number of rules may help determine a goal) and procedure" is invoked to respond to the student. If the
the rules are AND nodes (all of the subgoals student model were not consistent with his claim, he
referenced in the premise must be known for the rule would be asked to state his conclusion and then possibly
to apply). We call this AND/OR tree with rule to support it.
evaluations and final conclusions about goals the IKNOW 3b

solution of the diagnostic problem. Good. MYCIN has also made a decision.

182 _



0

The site of CULTURE-I is evidence that a lumbar puncture when rules are being discussed and suggesting that a
has been performed on Pt538 [RULEI 12]. topic be terminated. These capabilities are discussed in
Back to our discussion of the type of the infection.., the sections below on alternative dialogues, respon-

At this point, the topic of discussion is completed and ding to partial solutions, and opportunistic tutoring.
the student is receiving a summary of the relevant
conclusions. The program is automatically extracting
the "key factor"from each rule and displaying only the 0
"interesting" (useful conclusions.

Summary of evidence that the type of the infection is bac- THE STUDENT MODEL
terial(.98): Before a session with the student begins, GUIDON
29a. The fact that the meningitis is partially treated (.95) is

evidence that the type of the infection is bacterial (.19) uses MYCIN to "solve" the case to be presented to the
IRULEI48] student. The results of this background consultation,

29b. The WBC from the CSF and the percent of PMNs in the consisting of MYCIN's rule conclusions and its
CSF is evidence that the type of the infection is bacterial records of why rules did not apply, are reconfigured
(.9) [RULES011 into an explicit AND/OR tree of goals and rules so
The student reqijas mojaormation about one of the that the rules are indexed both by the goals they
inferences. The program reasons that because several
subgoals have not been discussed, these are the details to conclude about and the subgoals or data needed to
offer first. apply them. During the tutorial session, as the student

Details 29a inquires about the patient and receives more case data,
For which of the following factors would you like to see a this same information is used to drive MYCIN's rules
review of the evidence? in a forward direction. Thus, at any time, some of the
(Select from the following): rules MYCIN uses for determining, say, the type of the
I. the infection which requires therapy infection, will have led to a conclusion, while others
2. the fact that the meningitis is partially treated (.95) will require more information about the patient before
-2 they can be applied.
Summary of evidence that the meningitis is partially treated This record of what the expert (i.e., MYCIN) S
(.95): "knows" at any time during the student-run con-
32a. The infection which requires therapy, the fact that

organisms were not seen on the stain of the pending CSF sultation forms the basis for evaluating a student's
culture, and the time since therapy with the cephalothin partial solutions and providing assistance. Such an
was started are evidence that the meningitis is partially overlay model (See Carr and Goldstein, 1977) assumes
treated (.95) [RULEI45] that the student's knowledge is a subset of MYCIN's
Given this information, perhaps the student would like knowledge and that there are unique reasoning steps
to see the details of how it is used. for making any particular deduction. Neither

Do you want to see RULEI48? assumption is always correct; the rule set nevertheless
. No provides a first-order approximation to the student-

GUIDON provides a menu of options for requesting modeling problem.
case data, asking for MYCIN's evaluation of the The three components of the student model are
problem (e.g., "What subgoals are PENDING?" shown in Figure 1. The three components are stored as
"Give me DETAILS"), determining dialogue context properties of each rule in the knowledge base. The first
(e.g., "What RULE are we discussing?"), changing component, the cumulative record of whether a
the topic, requesting assistance (the options HELP, student knows a rule, is called the USE-HISTORY
HINT, and TELLME), and conveying what is known property of the rule. It is the program's belief that, if
(e.g., "I want to make a HYPOTHESIS"). The menu the student were given the premise of the rule, he
of over 30 options allows for input to be terse, while would be able to correctly, in the abstract, draw the
defining clearly for the student what the program can proper conclusion. USE-HISTORY is primed by the - g
understand. As arguments to the options, the student student's initial indication of his level of expertise,
can use phrases (e.g., "IKNOW about the lumbar which is matched against "difficulty ratings"
puncture"), keywords (e.g., "IKNOW LP"), or associated with each rule. Like the other two com-
indices of remarks made by the program (e.g., ponents, the USE-HISTORY prop,:rty of a rule is
"IKNOW 3B"). All of the output text is generated represented as a certainty factor (the same belief

* from short phrases ("the following factors," "the measure used in MYCIN's rules) that combines the
CSF protein," "is evidence that") with verb tense and background evidence with the implicit evidence
number adjusted according to context. GUIDON's stemming from needs for assistance and verbalized
initiatives involve probing the student's understanding partial solutions, as well as the explicit evidence

- (if a question or hypothesis is unexpected), offering stemming from a direct question that tests knowledge
* overviews and summaries, introducing new topics of the rule.

183



RD-R145 349 ARTIFICIAL INTELLIGENCE IN MAINTENANCE: PROCEEDINGS OF 3/16
THE JOINT SERVICES-(U) DENVER RESEARCH INST CO JUNHLT-42 846582C8i

UNCLASSIFIED F/G 6/4 N

I IhhhhhhhhhhhhlmlflffflIIIIIIIfIIIIIIIIIIEEI



1168~ jj.32

111125 I"'.4 1.6

MICROCOPY RESOLUTION TEST CHART
NATIOI4A BUREAU OF STANDARDS 1963-A



Update when a Update during 0
domain rule fires hypothesis evaluation

Background P USE-HISTORY = =>> STUDENT-APPLIED? > > USED'

/ JI Hypothesis/
Assistance Quiz
Needs I

Figure 1. Maintenance relations for student-model components (Clancey, 1979b).

The second component, called STUDENT- previously discussed. For GUIDON's rule-based
APPLIED?, records the program's belief that the approach, this takes the form of selecting which rules
student is able to apply the rule to the given case, that and rule clauses to mention and deciding whether to
is, that the student would refer to this rule to support a introduce a goal for detailed discussion or just to offer
conclusion about the given goal. Thus, there is a a summary of evidence. In the excerpt, for example,
distinction between knowing a rule (USE-HISTORY) GUIDON provided details for an inference (rule 148)
and being able to apply it, since the student may know by offering to support achieved preconditions that
which subgoals appear in the rule but be unable to were not mentioned in the tutorial dialogue up to that
achieve them. STUDENT-APPLIED? is determined point.
once for each rule during a case at the time MYCIN is Similarly, when the student takes the initiative by
able to apply the rule. (The evidence considered is: Is it saying he has determined some subgoal, the tutor
believed that the student knows the rule [USE- needs to determine what response makes sense, based 4--

HISTORY]? Was the rule mentioned during this on what it knows about the student's knowledge and . 0
sesson? Has it been discussed in previous tutorials? Is shared goals for the tutorial sesson (topics or rules to
there a subgoal that the student is not believed to be discuss). The tutor may want to hold a detailed
able to determine?) response in abeyance, simply acknowledge the

The third component of the student model, called student's remark, or probe him for evidence that he
USED?, is relevant whenever the student states a does indeed know the fact in question. Selection
partial solution (a list of possible diagnoses, not in- among these alternative dialogues might require
tended to be complete). It records the program's belief determining what the student could have inferred from
that the student would mention a rule if asked to previous interactions and the current situation. In the
support his partial solution. This component combines dialogue excerpt shown above, GUIDON decides that
indirect evidence by comparing conclusions made by there is sufficient evidence that the student knows the
rules with the student's conclusions, the record of solution to a relevant subproblem so that detailed
what rules the student is believed to be able to use discussion and probing are not necessary.
(STUDENT-APPLIED?), and evidence that the Decoupling domain expertise from the dialogue _ _

student may have remembered to apply the rule in this program, an approach used by all ICAI systems, is a
case (e.g., the rule mentioned earlier in the dialogue), powerful way to provide flexible dialogue interaction.
This combined evidence affects how the program In GUIDON, discourse procedures formalize how the
responds to the partial solution and feeds back into the program should behave in general terms, not in terms
USE-HISTORY component of the student model. of the data or outcome of a particular case. A

discourse procedure is a sequence of actions to be -

followed under conditions determined by the com-

Discourse Procedures and A ternafive Dialogues plexity of the material, the student's understanding of
the material, and tutoring goals for the session. Each

The student is allowed to explore MYCIN's option available to the student generally has a
reasoning by using options like FACTORS, shown discourse procedure associated with it.
earlier in the protocol excerpt. However, the tutor is For example, if the student indicates, via the
not a simple, passive, information-retrieval system. In IKNOW option, that he has a hypothesis about some -

addition to clearly laying out data and inferences, the subgoal but MYCIN has not yet been able to make a
tutor has to reason about what constitutes reasonable, decision, the procedure for requesting and evaluating a
expected elaboration on the basis of %hat has been student's hypothesis is invoked. Otherwise, if MYCIN

184 Q0



has reached the same conclusion, the procedure for Responding to Partial Solutions
discussing a completed topic is followed. Whether or
not the student will be probed for details depends on how eo son opat ia soutionstatedthe model that the tutor is building of the student's how the program responds to partial solutions stated
understanding (considered below) by the student. Tutoring rules are used both to update

the model and to select the appropriate discourse

procedures for responding. In this excerpt, while the
student's hypothesis for a subproblem is correct,

COMPLETEDGOAL.PROC005 nevertheless, after analyzing the previous history of
PUrpose: Discuss final conclusionfor a goal. interaction with the student, GUIDON is not sure thatStepo: Decide whether to finish with a summary. the student really knows why his hypothesis is correct.

Therefore, instead of accepting this answer, GUIDON
Step 2: Discuss final hypothesis for the goal. requests relevant factors to support the hypothesis and -
Step3: Wrap up discussion or record completion, probes further to see if the student knows why an

Figure 2. Discourse procedure for completing a goal alternative hypothesis is discredited.
discussion. GUIDON asks the student to state a hypothesis for a

subgoal. The student may have volunteered to do this, or
the program may be testing the student's understanding.

The procedure for ending discussion of a topic is What is the type of the infection?

paraphrased in Figure 2. Conditional actions in Bacterial .0

discourse procedures are expressed as tutoring rules (t- The program asks the student to support this hypothesis
rules). T-rules decide whether an action should be either because it is incorrect or, as in this case, the student

model indicates that the student may not know all of the
* taken, and when this involves invoking another relevant rules. (GUIDON changes the promptfor student

discourse procedure, other t-rules will decide what input to ->> " to indicate that specific input is expected
should be said. For example, the second step of the and student-initiated options are not.)
procedure COMPLETEDGOAL decides whether to What facts about this case tell you that the type of the in-
give the student the answer or to ask him to make a fection is bacterial?in.
hypothesis. Figure 3 shows the t-rule that caused (E PMNs -'l

GUIDON to acknowledge the student's statement Ti.v
about what he knew in the dialogue illustrated above, The percent of PMNs in the CBC is not relevant for deter-mining the type of the infection. '":
rather than ask for details. To ask about and evaluate >>mnin the iF
the student's hypothesis, another discourse procedure >> Cerebral-fluid glucose value
would have been invoked. Of course, the discourse >>Proteinof the CSF
procedure for discussing a completed topic is invc',:ed These factors are related to the rules used bs' M YCIN to
from many other procedures besides the one conclude that the infection is bacterial, and the student
corresponding to the IKNOW option: It may be in- model is updated accordingly.
yoked in the course of giving details about how a You're right about the CSF protein, the percent of PMNs in
subgoal is determined, in responding to a student's the CSF, and the CSF glucose value; however, you should
hypothesis for a subgoal, when the program detects have mentioned the fact that the meningitis is partiallytreated, the WBC from the CSF, and the fact that the
that the current subgoal (topic) is substantially simultaneous blood glucose value is not known.
completed (enough data have been given to make a Other hypotheses are then discussed.
strong conclusion), and so on. MYCIN rejected some possibilities you did not mention:

What facts about this case tell you that the type of the in-
fection is not viral?

T-RULE5.02 Directly statesingle known rule. Referring to the rules that MYCIN uses to solve
IF 11 There are rules having a bearing on this goal that subproblems (such as determining whether a

have succeeded and have not been discussed, and meningitis infection is bacterial, fungal, viral, or
2) The number of rules having a bearing on this goal tuberculous), GUIDON decides which of these rules, if

that have succeeded is 1, and any, might have been used by the student. That is,
3) There is strong evidence that the student has ap- what inference chains are consistent with the student's

plied this rule behavior? This analysis is complicated by the fact that
THEN Simply state the rule and its conclusion a particular hypothesis about the problem may be

indicated by more than one rule, or negative evidence
Figure 3. T-rule for deciding how to complete may outweigh positive evidence,
discussion of a topic. A potential weakness of the GUIDON program is

185



that it attempts to explain the student's behavior solely adhere to conventional discourse patterns.
in terms of MYCIN's rules. If the student is basing his 2. Provide orientation to new tasks by top-down 0

questions and hypotheses on incorrect rules, GUIDON refinement: Provide the student with an
is not able to formulate these rules and address them organized framework of considerations he
directly. It is possible as well that the student's con- should be making, without giving away the
cepts are different from MYCIN's, so his conclusions solution to the problem (important factors,
might be correct, but he will want to support them subgoals, size of the task), thus challenging the
with reasoning that is different from MYCIN's. This student to examine his understanding con- 0
could involve something as simple as wanting to refer structively.
to the patient's age in general terms (infant, 3. Strictly guide the dialogue: Say when topics are
adolescent), while MYCIN recognizes only precise, finished and inferences are completed, as op-
numerical ages. posed to letting the student discover transitions

Modeling medical reasoning in terms of an alter- for himself.
native rule set (not just a subset of MYCIN's rules) is a 4. Account for incorrect behavior in terms of -

theory-formation problem that goes beyond the missing expertise (as opposed to assuming
current capabilities of Al. It is possible that the ap- alternative methods and strategies): Explain
proach followed by Stevens, Collins, and Goldin clearly what is improper from the tutor's point of
(1982) of collecting data about student misconceptions view (e.g., improper requests for case data). This
and then incorporating these variations into the is, of course, more a statement of how GUIDON
modeling process will prove tenable for the medical models the student than a principle of good --
domain, teaching. 0

.5. Probe the student's understanding when you are
Opportunistic Tutoring and Pedagogical Style not sure what he knows, when you are

It is sometimes advantageous for the tutor to take responding to partial student solutions:

the initiative to present new material to the student. Otherwise, directly confirm or correct the

This requires that the tutor have presentation methods solution. aly
that opportunistically adapt material to the needs of 6. Provide assistance by methodically introducingoblem's
the dialogue. In particular, the tutor has to be sensitive small steps that will contribute to the problem's
to how a tutorial dialogue fits together, including what
kinds of interruptions and probing are reasonable and a. Assistance should at first be general, to remind
expected in this kind of discourse. GUIDON the student of solution methods and strategies he

demonstrates its sensitivity to these concerns when it already knows;
cfb. Assistance should encourage the student to
"missing hypotheses," asks him questions about advance the solution by using case data he has

recently mentioned data to see if he understands how already been given.

to use them, quizzes him about rules that are related 7. Examine the student's understanding and in-

(by premise and action) to one that has just been troduce new information whenever there is an

discussed, follows up on previous hints, and comments opportunity to do so.

on the status of a subproblem after an inference has
been discussed ("Other factors remain to be con-
sidered..."). Case and Domain Independence

There are many subtle issues - when to interrupt Patient cases are entered into the MYCIN system for
the student, how much to say, and the like - that receiving a consultation or for testing the program, so
constitute a pedagogical style and are implicit in the case library is available to GUIDON at no cost.
GUIDON's teaching rules. For example, several This provides over 100 patients that GUIDON can
tutoring rules in different situations may present short discuss, clearly demonstrating the advantage that -.

orientation lectures, but nowhere does GUIDON ICAI has over the traditional computer-based-
reason that its interaction will be of the tutorial type, instruction approach in which each lesson must be
which provides orientation when appropriate, in designed individually. ..
contrast with the coaching type (e.g., Burton and Besides being able to use the teaching procedures to

Brown, 1979), which only makes interruptions. For tutor different cases, GUIDON can provide tutorials
this reason,-it is useful to summarize the set of tutoring in any problem area for which a MYCIN-like
principles that appear implicitly in the tutoring rules: knowledge base of decision rules and fact tables has

1. Be perspicuous: Have an economical presen- been formalized (see van Melle, 1980). This affords an
tation strategy, provide lucid transitions, and important perspective on the generality of the

186



discourse and pedagogical rules. following when they designed MYCIN's rule set. To
Experimental tutorials using knowledge bases in two make this implicit design knowledge explicit, a new

other domains - structural analysis (SACON) and system, NEOMYCIN'(Clancey and Letsinger, 1981),
pulmonary function diagnosis (PUFF) - have is being developed that separates out diagnostic
revealed that the effectiveness of discourse strategies strategy from domain knowledge and makes good use
for carrying on a dialogue economically is determined of hierarchical organization of data and hypotheses.
in part by the depth and breadth of the reasoning tree Moreover, besides reconfiguring MYCIN's rules so
for solving problems, a characteristic of the rule set for that knowledge is separated out and represented more
each domain. When a solution involves many rules at a declaratively, it is necessary to add knowledge about
given level, for example, when there are many rules to the justification of rules. Justifications are important
determine the organism causing the infection, the tutor as mnemonics for the heuristic associations, as well as
and student will not have time to discuss each rule in for providing an understanding that allows the
the same degree of detail. Similarly, when inference problem solver to violate the rules in unusual Schains are long, an effective discourse strategy will situations.
entail summarizing evidence on a high level, rather Finally, NEOMYCIN has additional knowledge
than considering each subgoal in the chain, about disease processes that allows it to use the

strategy of "group. and differentiate" for initial
problem formulation, in which the problem solver
must think about broad categories of disorders and -

RESULTS consider competing hypotheses that explain the
GUIDON demonstrated that teaching knowledge problem data. Thus, we want to teach the student the

could be treated analogously to the domain expertise knowledge a human would need to focus on in-
of consultation systems: It can be codified in rules and fectious-disease problems in the first place, essentially
built incrementally by testing it on different cases. The the knowledge (previously unformalized) that a human
framework of tutoring rules organized into discourse needs to use MYCIN appropriately.
procedures worked well, indicating that it is suitable to In conclusion, GUIDON research sets out to 0
think of a tutorial dialogue as being separated into demonstrate the advantages of separate, explicit
relatively independent sequences of interaction. representations of both teaching knowledge and
Moreover, the judgmental knowledge for constructing subject material. The problems of recognizing student
a student model can also be captured in rules utilizing misconceptions aside, this research demonstrated that
certainty factors, showing that the task of modeling a simply representing in an ideal way what to teach the
student bears some relation to MYCIN's task of student is not a trivial, solved problem. An un- "
diagnosing a disease. structured set of production rules is inadequate.

In contrast to GUIDON's teaching knowledge, the GUIDON's teaching rules are organized into
evaluation of MYCIN's rule set for this application procedures: NEOMYCIN's diagnostic rules are
was not so positive. While MYCIN's representational hierarchically grouped by both premise and action and
meta-knowledge made possible a wide variety of are controlled by meta-rules. GUIDON research
tutorial activity, students find that the rules are dif- demonstrated that the needs of tutoring can serve as a
ficult to understand, remember, and incorporate into a "forcing function" to direct research toward more 0
problem-solving approach. These difficulties psychologically valid representations of domain
prompted an extensive study of MYCIN's rules to knowledge, which potentially will benefit those aspects
determine why the teaching points were not as clear as of expert-systems research that require human in-
had been expected. GUIDON researchers discovered teraction, particularly explanation and knowledge
that important structural knowledge (hierarchies of acquisition.
data and diagnostic hypotheses) and strategic 9
knowledge (searching the problem space by top-down
refinement) were implicit in the rules. That is, the
choice and ordering of rule-premise clauses constitute
procedural knowledge that brings about good
problem-solving performance in a MYCIN con-
sultation but is unavailable for teaching purposes. •Rather than teaching a student problem-solving steps 'GUIDON ,s described full% tY Clance, (19"90, a shorter discuscon is
(rule clauses) by rote, it is advantageous to convey an p.en in Clance, 9'19al Clance% and Lesminer 1981) describe the
approach or strategy for bringing those steps to mind NEOM.YCIN research The stud' of .MsCIN's rule base Ieadinj up to thisne, Sem and somne methodoolocal c:onsiderations are pro, ,ded by. Clarie%

the plan that knowledge-base authors were a18_.,n dOre ii.dt

1I



REFERENCES Clance-. W.J., .Lesinger. R. NEO YCIN: Reconfiguring a rule--
based expert system for application to teaching. Proceedings of0

Burton. R.R., & Brown. J.S. An investigation of computer coaching the 71h International Jo'int Con ference on Artificial Inteiigence.
for informal learning activities. International Journal of Man- Vanrou'.er. B.C., 1981, 829-836.
Vtachmne Studies, 1979. 11. 5-24.

Goldstein, 1. The genetic epistemology of rule s"stems. in-
Carbonell. J.R. Al in CAI: An artificial intelligence approach to ternational Journal of Alan-Mfachine Studies. 1979, 11, 51-77.

computer-aided instruction. IEEE Transactions on Man-
Machine S.Vstems, 1970.4, 190-202. Shortliffe. E. H. Computer- based Mledical Consultations: Al )CI..

New York: American Elsevier, 1976.0
Carr, B.. & Goldstein. 1. Os'erla ' s. A rheorsv of modeling for

computer aided instruction. Al Memo 406. Al Laboratory, Stevens. A.. Collins, A.. and Goldin, S.E. MIisconcept ions in
Massachusetts Institute of Technology, 19777. students' understanding. In D. Sleeman and i.S. Brown (Eds.),

Intelligent Tutoring Systems. London: Academic Press, 1982.
R RClanceS. Wa y Tutoring rules for guiding a case method dialogue.

nInternational Journal of Man-Machine Studies, 1979a, 11. 25- an Melle, W. A domain independent s-stem that aids in con-
49. structing consultation programs (Report No. STAN-CS-80-820 .

Stanford University: Computer Science Department, 1980.
C oancey. Wi. Transfer of rule-based expertise through a tutorial (Doctoral dissertation)

* dialogue (Report No. STAN-CS-769). Stanford University.:
Computer Science Department, 1979b. (Doctoral dissertation) Yu, o.L., Buchanan, B.B., Shortliffe, E.H., Wriath, S.M., Davis.

R.. Scott. AC.. & Cohen. SN. Evaluating the performance ofa
Clanicey. W.J The epistemology of a rule-based expert system: A computer-based consultant. Computer Programs in Bio-

framework for explanation. Artificial Intelligence, 1983, 20T(3). medicine, 1979,L 95- 10
215-251.

Clance%. W.J. Methodology for building an intelligent tutoring
sstem. To appear in o. Kintsch J tR. Miller, & P.G. Poison
tEds.).M iethod and tactics iS cognitive science. Lawrence
Erlbaum Associates, in press-a.

188

215-251.0



0 DESIGNING AN EXPERT SYSTEM FOR TRAINING

AUTOMOTIVE ELECTRICAL TROUBLESHOOTING

Wallace Feurzeig, John Frederiksen, 0
Barbara White, and Paul Horwitz

Two key issues in the design and development of expert systems for
maintenance training are the choice of an appropriate expert model and the
function of the expert in instruction. We are confronting these issues in .
instructional research involving the design of an expert instructional system for
automotive electrical troubleshooting. In studying expert troubleshooters and in
examining troubleshooting procedures used in the military, we have encountered
three distinctly different types of expertise. Each of these requires different
forms of knowledge and produces qualitatively different troubleshooting
behaviors. One kind of expert has established a large repertoire of symptom-fault
associations through extensive experience in troubleshooting. Another kind of
mechanic utilizes fixed troubleshooting procedures from shop manuals and various
maintenance aids. A third kind of expert does extensive inferencing in attempting
to diagnose faults.

Each of these approaches can, in principle, be modeled and form the
basis for an expert aiding or training system. The first mode requires experience
gathered over many years and thus cannot be learned in the training time usually
available. The third is usually rejected because of the presumed difficulty that
typical trainees would have in learning the inferencing methods. Probably for
these reasons, the military has opted for teaching fixed procedures and relies on
the availability of manuals and job aids. However, there are drawbacks to the use
of fixed procedures. Sets of fixed procedures are seldom complete, thus, some
faults remain undiagnosed. Furthermore, following fixed procedures does not
develop transferable skills which would enable a mechanic to troubleshoot systems
not covered by the manual. We believe that an appropriate choice of a
knowledge-based inferencing model makes possible the teaching of the basic
principles and skills of troubleshooting electrical circuits and provides a strong
foundation for practical work in the field.

Our belief is empirically based. It derives from working closely with
expert mechanics. One of these experts, an instructor in a technical school who is
exceptionally analytic and articulate, employs such an inferential approach to
troubleshooting in both his instruction and his actual diagnostic work. We have .
observed his troubleshooting instruction in formal courses and with individual
students. Also, we have studied, video taped, and analyzed his troubleshooting
practices while locating faults that we introduced into an automotive system.

His approach to troubleshooting involves focusing on a particular device
and concatenating the rest of the circuit into a feed system and a ground system.
This approach requires knowledge about the device specifying (1) the conditions
that must be met in the feed and ground systems and (2) the operation of the
device when those conditions are met. The Feed-Device-Ground (FDG) strategy
for troubleshooting enables one to make inferences about the states of the three

189



components. The key measurement used is voltage drop from a test point to
ground. The test point can be either the input or output to the device. For
example, presence of a correct voltage at the output indicates that the feed and
device are providing continuous electrical paths, and that the ground system
(which is in parallel with the voltmeter) is not shorted (although it may be open).
On the other hand, lack of voltage is a more ambiguous result leaving multiple
possibilities for the location of the fault. The FDG strategy employs operations
as well as measurements as steps for reducing these ambiguities: for example,
disconnecting a ground system, or providing an alternative path to bypass the
normal feed system.

The FDG strategy is knowledge-based. It requires extensive knowledge
of device functions and interactions, knowledge of electrical circuits including the
fundamental voltage and current relationships, and knowledge of the
characteristics of automotive devices such as coils, spark plugs, and condensers.
Thus, teaching troubleshooting with the FDG strategy requires instruction in
electrical theory and system operation, as well as instruction in the strategy
itself. These components of understanding are the foci of our instructional
research.

The goal of our instruction in electrical theory is to help students gain a
clear, qualitative understanding of the concepts of voltage and current flow in
series and parallel circuits. Traditionally, in dealing with these difficult concepts,
analogies to fluid flow are employed. In troubleshooting work, including the FDG
strategy, an understanding of voltage drop is essential. The representation of this
concept in the fluid flow model is by analogy to differential pressure. -
Unfortunately, pressure is poorly understood by most people, and a reference to it .
may be self-defeating. To improve students' understanding, we are devising a
computer system for graphically and dynamically representing current and voltage
relationships in circuits.

In this system, voltage is concretely represented by different colors,
ranging in hue continuously from red to blue. Current appears as simulated
motion along wires. This representation offers two major advantages over the
fluid flow model. Color is more easily visualized as a local variable than pressure,
and our system avoids a major failing of the fluid flow analogy, namely the fact
that fluids can flow even in the absence of a completed circuit. In our system,
because the behavior of the graphical icons is constrained by a realistic model of
the circuit, there can be no flow of current unless a closed path exists between
the terminals of a voltage source.

The graphical representation we are implementing is multilevel. One
can either see the entire electrical system or a more detailed (full screen) graphic
representation of any device showing its components and their electrical
circuitry. This enables one to study circuit behavior and to troubleshoot circuits
either at the functional module level or at the component level.

Using this system, we will teach both circuit theory (including the
behavior of normal and faulted circuits) and troubleshooting, using the FDG
strategy. The system can provide a general framework for instructional activities

7

190



of many kinds. It can be used to support open-ended student exploration,
permitting students to study the operation of both unfaulted circuits and circuits
embedding faults of their choice. The system can also be used in a more directed
fashion to present students with problems and tasks of various kinds. For S
example, they can be asked to predict the consequences of specified circuit
operations such as closing a switch or faulting a device. Also, they can be
assigned the task of isolating an unknown fault.

Artificial intelligence methods will play a fundamental role in the
instruction. We are implementing two Al-based instructional systems. The first S
is an articulate expert to demonstrate the application of the FDG strategy on a
variety of problems including those set up by the student. The system is capable
of generating explanations for its decisions and actions along the way. The
system will be able to respond to certain kinds of "why" questions posed by the
student. The second type of Al facility will monitor and evaluate student
performance on troubleshooting problems posed by the system. The student's task •
will be the application of the FDG strategy. In evaluating student performance,
the system will permit a variety of troubleshooting paths: the FDG strategy does
not require a fixed or an optimal path. It will, however, look for measurements or
operations that are redundant or contraindicated by the student's knowledge of
the state of the circuit thus far. These Al facilities will employ extensive use of
interactive graphics involving the use of pointing devices and menus as well as -S
dynamic displays. Also, they will employ models of expert performance expressly
chosen to mirror the kind of human expertise that we believe to be most
effective.

To test the effectiveness of these models in promoting the development _ .
of students' troubleshooting skills, we plan a number of instructional experiments.
These are designed to address the following issues: the effect of different circuit
representations on helping students understand circuit operations; the
effectiveness of the Al-based instructional facilities in helping students acquire
troubleshooting skills; and the transfer of troubleshooting skills to problems
significantly different from those previously studied. We expect that the
integration of models of human expert performance and Al instructional methods . .....
will have valuable learning benefits. This type of intelligent CAI system, based on
such integration, will, we believe, have applications to many areas of maintenance
training.

191



ABOUT THE AUTHORS

Mr. Wallace Feurzeig is Division Scientist of the Bolt,
Beranek and Newman, Inc. Information Sciences Division.
His major research interest is in the development of more
powerful systems to improve learning. He is currently
working on two Al-based training systems: a real-time
tactical trainer for F-14 radar intercept officers and the
automotive electrical troubleshooting training system.
From 1965 to 1983 he headed the Educational Technology
Department at Bolt, Beranek and Newman, Inc. Mr.
Feurzeig is co-developer of the LOGO programming
language and has implemented training systems in a
number of domains, including mathematics, .linical
medicine, electronics, ship navigation, and air intercept
tactics.

Dr. John Frederiksen joined the Bolt, Beranek and
Newman, Inc., Information Sciences Division in 1975.
Under the auspices of the Office of Naval Research and
the Navy Personnel Research and Development Center, he
is currently developing a second generation of training
systems for remediating reading skill deficiencies of name
recruits. He is also Co-director of a cognitive sciences
project supported by the Army Research Institute and the
Office of Naval Research which integrates Al methods in
developing a system for teaching inferential
troubleshooting. Dr. Frederiksen received his Ph.D. in
psychology and psychometrics from Princeton in 1966.

192

I_



r1 Models of Natural Intelligence in Fault Diagnosis Tass.
N Implications for Training and Aiding of Maintenwice Persawiel
01

(V~Dr. William B. Rouse

Georgia Institute of TechnologyO ,'~:) -, I;i"
I have decided to orient my remarks today around natural intelligenc as

1 opposed to artificial intelligence. T at human behavior and to

present a summary of some workiie'vetone attempting to un erstand human
intelligence and abilities in problem solving. Particularly, -to lookat
human problem solving in diagnostic situations in both maintenance and
operational environments. . -)

Before I give you an overview of the talk, ['d like to emphasize
something about the models that I'm going to talk about. You'll see that some of
the models have an Al flavor. In a sense, the models are not an end product in
themselves, they are a process. We are just trying to understand how people
approach problem solving and diagnostic tasks. I think a lot of what AI has to
offer is a process for thinking about things rather than a product. I'll elaborate on
the application of these models in training and aiding later.

There are three topics I'm going to talk about. First, I'm going to give
you a quick background on some experimental studies we've done over several
years so you can see where our knowledge base is as experimenters. As each
experiment represents a paper itself, I certainly won't go into them in great
detail. Second, I'll talk about a series of models that we try to use to describe
human behavior in diagnostic tasks. Finally, I'll talk about the results and
implications for the topic for this meeting.

As background, we've done a series of efforts over the last 8 years
funded by many agencies. At this point, they've resulted in 18 experimental
studies and three training programs that we've devised and implemented. One
thing I want to empahsize is that of these 18 experiments, 16 of them were
performed with professional operational and maintenance personnel as opposed to
students. Two were performed with students, and in one case the use of
engineering students was actually a high-fidelity choice of subjects.

To give you a feeling of the range of the topics we looked at, I'll go
through some of these experiments briefly. Some early experiments looked at
logic networks, but we fairly quickly got on to more operational types of systems,
such as aircraft, automobile, power plants, and avionics. We looked at a lot of
people and had a tremendous data base of results. This communications network
is current work funded by ARI and is an interesting problem of people
troubleshooting large-scale systems. I'll talk a little later about how a very smart

*system can help you for 99 percent of your problems and then for I percent it
succeeds in burying the problem until it's absolutely impossible to solve it.

Figure I gives you a feeling for some of the experiments we looked at
with real equipment, simulators, and ship environments. Again, all subjects were

193

L _ 0



EXPERIMENTS WITH

HIGH FIDELITY SIMULATORS AND REAL EQUIPMENT

NO. OF I NATURE OF NO. OF NATURE OF

EXPERIMENTS i TASK SUBJECTS SUBJECTS

2 AIRCRAFT 62 AIRCRAFT
POERPLANTS MECHANICS

3 AIRCRAFT 14 AIRCRAFT
SIMULATORS PILOTS

SHIP 36 MARINE
SIMULATOR ENGINEERS

Figure 1.

194

- - ± . . . . . • . . . . . . . . . . .. .. . . . . . . . . . . . . . . . . _ . , - - - - . . . . . . z .. . m i a i n n



professional personnel. Figure 2 shows you some of the training programs we've
been involved in. One of our concerns was taking some of the ideas that we
devised and actually getting them used rather than just published. So, for S
example, we became involved in the nuclear power industry and developed a
problem solving training program for diagnostic performance of maintenance and
operations personnel. These two programs are in place, about 100 students have
been through so far, and that's the through-put we expect. A lot of my comments
reflect the fact that we were trying to get it into place, trying to get it into
schools, and have it reside there. There are a lot of problems that I won't have
time to elaborate on here, but they deal with interpersonal relationships of
instructors and reseachers as much as they deal with problem solving abilities of
trainees.

Question: Why would nuclear operators be interested in diesel generator
diagnostics? .

Rouse: Because the backup diesel generator system is essential if
they're going to keep the plant up and they have no simulator for it. There are
some systems like GE's DELTA system for doing some maintenance, but it's a
particular maintenance problem. There is a tremendous number of Licensee
Event Reports (LERs) in diesel generator problems. In fact, there's a special S
symposium a couple weeks from now where several utilities are getting together
to bemoan their difficulties with their diesel generators. So, it turns out it's an
interesting application for computer-based simulators as opposed to full scope
simulation because they don't have the full scope simulator yet. One of the things
that is crucial in implementing a training program is that it be complementary to
the technology they're already committed to. If they're already committed to a -
full scope simulator, often you'll have a hard time suggesting alternatives.

In the process of these studies, besides our empirical results, to organize
our thinking we developed models of how we thought people were doing problem
solving. Each of these models was part of a series because as we got to more
robust domains and into operational situations, we found that there were a lot of
things we didn't think about. For example, we really haven't thought too much
about context and context is absolutely overwhelming in terms of its impact both
for good and for bad. Also, we didn't think too much about dynamic environments
where the problem is changing in time and you're trying to operate the system at
the same time you're trying to maintain it.

Let me go through each of these five models very briefly. The first
model, shown in Figure 3, arrived out of the question "Why do some problems take
a long time while other problems do not?" One notion is that some problems are
complex and there's a scale of complexity. This Information Theoretic Model
turned out to correlate very well with people's diagnostic performance, or the
time it took them to find faults. It may not be obvious in the model, but it turns
out that this measure has embedded in it the particular individual strategy. One
of the conclusions we came to was that the complexity of a problem is as much
related to the problem solver as it is to the system. It is highly related to a
person's perception of the system. This model is really only trying to predict
overall time to solve a problem. If you wanted to get down to a finer grain, let's

195



P.

TRAINING APPLICATIONS

NATURE OF NATURE OF NO, OF

COURSE TRAINEES TRAINEES •

OPERATIONAL MARINE >100

PROBLEM SOLVING ENGINEERS (-IOO/YR)

SW4ITCHBOARD ARMY >100
DIAGNOSTICS MAINTAINERS (300/YR)

D!EgEL NUCLEAR
GENERATOR OPERATORS AND (-IO0/YR)

DIAGNOSTICS MAINTAINERS I

Figure 2.

19

196



look at Figure 4. This model predicts what kind of actions people take to form a

feasible set and make choices in that feasible set to decide what to test. One of
the things we found from the literature and from our results is that people are not
very good at forming a feasible set. There is a tremendous amount of information I
in the problem to help you form the feasible set, but people end up with a fuzzy
feasible set. Some things are very clearly alternative solutions while others, the
vast majority of things, are in the middle. With this model, we were able to
predict how long it would take people, how many tests they would have to take, to
find the problem and the nature of different kinds of aids used in the testing
sequence. That was fairly successful. However, one thing that came to mind here S
was that maybe people don't think about a feasible set at all. As engineers, we
tend to think about them, but maybe people in general don't think about them at
all. So the next model, Figure 5, was the first one that has any Al flavor, sort of 1
a very simple production system model. People are assumed to approach the
problem with a set of heuristics and that's how they find their faults.

We found out that this model was actually pretty good. We could predict
the type of action a person would pick with an agreement of over 90 percent using
this model. Perhaps the best insight from this model was that it isn't so much
people knowing what to do, it is a matter of them knowing when to do it. People
have a tremendous amount of knowledge; they know all the rules in this particular
task, but they aren't always sure when to apply those rules.

Figure 6 shows the next model in this whirlwind tour. We started looking
at problems that were highly context related, We looked at a context people were
familiar with and then one they were unfamiliar with. One thing that emerged is
that people use contextual cues extremely strongly to solve their problems. This
model basically says that people look at the face of the system, and if they can
find anything familiar there, they act on it. By S-Rule we mean a symptomatic
rule; they simply take a symptom and they map to a solution. There is a loop in
Figure 6 that people tend to try to stay in, and they use their contextual clues to
do that.

However, sometimes there's nothing familiar in what you're looking at on
the face of the system, and then you should revert to a more structural approach.
A lot of what we've heard so far in this workshop uses a structural approach.
People are not as good at structural approaches as they are at state-oriented
approaches. They're very good at recognizing patterns and images, but people will
avoid having to get down and analytically solve a problem at almost any cost.
When forced to, they will consider the structure and apply a topographic rule. So
an S-Rule is just a mapping from observations of symptoms to a hypothesis and
solution. A T-Rule is getting down and looking at the structure of the problem.

One of the things we found is that, while people are really loath to apply
T-Rules, you can train them and they'll do it fairly well. So this distinction about
the impact of context, how people tend to be context dominated, was a very
important one. We found we could only be successful with some of the training
things we tried by explaining them in context. People can be trained to consider
structural information, but they don't naturally walk in the door with that
inclination, so the training is very important.

197



. . . , -.. . . . .,. - C, n

S

INFORMATION THEORETIC MODEL

f DETERMINE "ACTIVE" SYMPTOMS

FORM SET OF ALL COMPONENTS
THAT REACH ACTIVE SYMPTOMS -

FOR EACH COMPONENT IN .THIS SET, ...
DETERM!NE PROBABILITY Pi THAT
ITS OUTPUT STATE IS ABNORMAL

CALCULATE AND CUMULATE COMPLEXITY
N

C =C +" - Pi LOG Pi

TEST COMPONENT

FiFurc 3.

198



FUZZY SET MODEL

COMiPUTE "PSYCHOLOGICAL DISTANCE"

Xij FROM COMPONENT i. TO SYMPTOM j

FOR1M MEMBERSHIP FUNCTIONS
Uij(Xij)" Uji(Xji), Uij(XiJ) I

FORM FEASIBLE SET
U miNlEUi (Xij), 1-Ui(Xj) -

_, I

FORMa INFEASIBLE SET

U1  MAXIUj(Xij)]

FORM TEST SET
1

Ui = MINtUi, I-U1 ]

TEST COMONENT

WITH LARGEST Ui

199
P_ _



RULE-BASED MODEL

PROBL EM _____________________ ___

CONSIDER
DISPLAYED

I NFORMAT ION

RULE NO, 2 YES EVOKE
ACTION NO. 2

p- No

RULE NO. N YESEVK

200



FUZZY SET MODEL

COMPUTE "PSYCHOLOGICAL DISTANCE"
Xij FROM COM',PONENT i TO SYMPTOM j

K FOR'N MEMBERSHIP FUNCTIONS

Uij(Xij)., Uji(Xj), Uj(Xij) -

FORM FEASIBLE SET

U0= ,I {Uo(Xij), 1-UJ(Xjil) o

FORM INFEASIBLE SET
_1

U MAX[UiJ (Xij)]

1
0~

TEST COM PONENT
WITH LARGEST Ut

- __ . -- -- -- -- -- --

19°.

_9



RULE-BASED MODEL

PROBLEM ________________________

CONSIDER
DISPLAYED

INFORMATION

RULE NO. 2 YESEOE

SATIF!EDACTION NO. 1

RULE NO. 2 YES

"20

RULENO. YESEV-KU L EN >0 11 Y



0

FUZZY RULE-BASED MODEL

Pro b I er

.0

fConsider
n I rnation -.

Any Apply
Familir Ybs Appropriate

< Paterns 6 S -Rue K

ConsiderApply
Structural Appropriate
Information T-Rule

Figure 6.

201



Figure 7 considers the question, "How do people pick rules?" It turns out
that if you analyze their sequences and protocols, they are somewhat inconsistent.
So we decided to look at rules in different categories. To use a rule, you have to
recall it, it has to be applicable, it has to be useful and, above all, it has to be
simple. We assume that people have this "choosable" set and they'll pick rules in
this way. The only reason for adding this to the problem, to the model, was to -.. .
allow the possibility of things being somewhat qualitative and not being crisp. We
found it was crucial to be able to represent and to predict what sequence of
actions people would pick. At this point, we're not trying to predict whether they
solve the problem or not, or how long it takes, we're trying to predict at each
point in time, what will they do? That's a much more ambitious goal.

You may notice that I am basically willing to borrow from any discipline
that will help me to solve my problem. Some people have commented that some
of the things we've done are old AL. That doesn't bother me because I wasn't
intending to do Al in the first place. Also, people have commented about the
concepts and techniques being a mixed bag. That's quite all right, because mainly
we're concerned with how you train and aid people. We're not concerned with how
we advance the state-of-the-art.

Question: It seems to me there's an underlying assumption that all of
problem solving is driven by rules. However, you could have just as easily asked
the question, "How do you invoke concepts or procedures to solve a problem?"

Rouse: I'm glad you asked that, because that's the next model. Often
problem solving isn't action-by-action; it can be procedures or scripts; it can be
involve' with dealing with particular environments; or it can be frames. As shown
in Figure 8, for our next model we ended up taking the same model as we had in
Figure 6, but we didn't use S-Rules and T-Rules. We just said there are some
things you do related to the picture or to the face of the system you see, and
there are some things you do related to a deeper knowledge of the system.

Figure 9 includes some of the things that the questioner just mentioned.
At the highest level of recognition and classification, one of the problems is
whether or not you are in a familiar environment. We've done studies, for
example, where we take people who are airframe mechanics and give them
avionics systems to troubleshoot. It turns out we can train them to do that pretty
well, even though they don't know what the words or the systems mean. But
certainly when they do that, they don't have an avionics frame. They may have a -

frame that is analogous. The basic notion of this whole model is that, at the
highest level, when you run into a problem situation, you ask if you have a frame.
If it fits at all, you invoke it and you assume you're in that environment.

At the next level down, there is planning. One thing we've found is that
people would just love to avoid planning. And the easiest way to avoid it is to just
do what you've done before. If people have a script of the problem that roughly
fits, people will follow that script. If not, they may end up having to actually
formulate a plan, and planning is a very formal process.

Down where you're actually doing things, you get to the point of looking
for familiar patterns and again applying the S-Rules and the T-Rules. This model, 0

202



SELECTING RULES

UR M ,EMBERSHIP IN FUZZY SET OF RECALLED RULES

- DECREASES WITH TIME SINCE LAST USAGE
- INCREASES WITH NUMBER OF USES

UA = MEMBERSHIP IN FUZZY SET OF APPLICABLE RULES

- INCREASES IF ALL ENHANCING FEATURES PRESENT

- DECREASES IF ANY DETRACTING FEATURES PRESENT .0

Uu MEMBERSHIP IN FUZZY SET OF USEFUL RULES

- MIGHT INCREASE WITH EXPECTED. REDUCTION OF FEASIBLE SET SIZE

- INVOLVES TRADEOFF BETWEEN SHORT-TERM AND LONG-TERM USEFUL1ESS

Us = MEMBERSHIP IN FUZZY SET OF SIMPLE RULES

- DECREASES WITH NUMBER OF PROBLEM ELEMENTS TO CONSIDER -. _

- INCREASES W:ITH NUMBER OF USES

Uc = E.MBERSH!IP IN FUZZY SET OF CHOOSABLE RULES

Uc MIN [UR, UA, Uu, Us]

Figure 7.

203
_ I



MULTI-LEVEL RULED-BASED MODEL

PROBLEMV

CONS!CE-R

STTATE

DE C IS 1 )N ORIENTED
RESPONSE -

* ~ CN S!n-E STUCUR
I S T 7,U C -rUR AL RINE
[INFORMATION RESPONSE -

Figure 8.

204



DECISIONS AND RESPO'NS[S FOR THREE LEVELS OF PROBLEM SOLVING

PROCESS i DECISION STATE-ORIENTED STRUCTURE-ORIENTED

FLEVEL RESPONSE RESPONSE

1.RECOGNITION FRAME INVOKE USE ANALOGY

AND AVAILABLE? FRAME AND/OR

CLASSIFICATION BASIC PRINCIPLES-

2. PLANNING SCRIPT INVOKE FORMULATE

AVAILABLE? SCRIPT PLAN .

3. EXECUTION PATTERN APPLY APPLY 6 -

AND FAMILIAR? APPROPRIATE APPROPRIATE

MONITORING IS-RULE T-RULE

Figure 9.

205



the concept of which came out of an ARI grant, was operationalized out of our
current ONR geant. We have it up and running in Pascal. It's now a process
control operator and has about 250 or 300 rules. The rules aren't as important as
the structure which deals with them. This model was designed to deal with

* dynamic environments, things which change in time. That would be the case if
you were trying to operate a system and maintain it at the same time. We had to
add a lot of these elements as soon as we got into the nature of dynamic

- environments. For example, we realized that people tend to find a pattern that
triggers a script, and then follow that procedure almost independent of the 0
information coming back.

The purpose in presenting all these models is to provide the basis for the
following conclusions. Given these models and this series of experiments, we've
learned a bit about people's limitations and abilities in problem solving in
maintenance and operational diagnostics tasks. I'm going to give you a summary
of these limitations, all of which are based on experimental results and our
reasoning from the models.

I want to talk about three types of behavior. First, pattern recognition
behavior. All of our results say that people definitely prefer to use pattern
recognition. There's a very good reason for that. If we contrast pattern
recognition with more analytic information seeking, we find it's much easier to
get through life with pattern recognition. You can imagine if we had to build an
expert system, for example, to get up and have breakfast in the morning, and it
did everything analytically. It would have to rediscover all sorts of interesting
things each day, such as, what is a fork and how do you get out the door. Well,
people don't analytically figure those things out each day. There is a tremendous - -
number of context specific pattern recognition rules, and people would definitely
rather avoid doing analytic information seeking. There is one exception, one
subpopulation, and that's researchers. They'd rather do the latter than admit that
pattern recognition is there. We might be more successful, I guess, if we had all
our researchers become mechanics.

One of the inefficiencies of pattern recognition, or the thing that makes
it ineffective, is that people tend to be captured by almost familiar patterns. A
lot of work on human error has talked about this, for example, the work done by
Don Norman and Jim Reason. A good example, the other day I was driving
downtown to go to a festival they were having in part of the city, and I drove by
the exit that goes to work. Suddenly, I found myself at work. I said, "What am I
doing here?" It was very disconcerting for my wife and daughter. Thus, patterns
tend to capture you and that can present problems.

A corollary to this we've found is that people tend to be very reluctant
to accept that the unfamiliar has occurred. I think we find that this is true of
expert systems. They're very reluctant to admit that they don't know where they - _
are. So, there are commonalities between people and systems, I suppose, but one
of the things we've found is that it is important to try to train people so they will
accept that the unfamiliar occurs and they have to deal with those problems
differently. If they tend to force themselves into a context specific pattern, they
can lead themselves astray.

206



§

We found another very interesting thing unintentionally. We thought if
we taught people general principles of problem solving, and then could get them
to admit they were in the unfamiliar, they could deal with the unfamiliar. We S
conducted various studies to try to promote that and found that, if you tell people
about general principles, they tend to say, "Yeah, that sounds pretty reasonable."
If you watch what they do, however, they don't necessarily act like that. What we
found is that, if you get those general principles on-line, get the person in a
situation where the principle applies, explain that principle right then and there, _
as he needs it, and explain it in a context that he's currently dealing with, people 0
tend to conceptualize general principles themselves. In other words, if they see
these things explained to them on-line as they're trying to troubleshoot this power
plant or avionics system, then they start to generalize. You have to explain it in
context to get them to understand it in general. Whereas, if you explain it in
general, they shake their heads "yes," but they don't tend to use it.

If you think about it, that's not so surprising. I find if people give me an
elaborate theory of human behavior or the nature of the universe, I always end up
asking for examples so that they'll give me something concrete to hold onto.

Information seeking behavior, the second behavior I want to discuss, is . ..
more analytical. Assuming that we've got people in an analytical mode, what do
we know about them? People don't tend to consider the full implications of all of
the available information; instead, they focus on a portion of the information.
They also don't tend to seek disconfirming information. If they've got a
hypothesis, they are not going to look at the alternative. One specific thing we've
found is that, when you're focused on the failure of your system, you tend not to
look at what's still working, which may be important. You're thinking about
failures.

When time-pressured, people adopt brute-force strategies. We've done
things like time pressure them at a rate that is twice what they'd do self-paced.
Impulsive subjects, assessed via the Matching Familiar Figures Test, make all
sorts of errors in information collection (and we don't seem to be able to train .....
them out of this). In contrast, field dependent subjects seem to be able to be
trained out of it. Another characteristic of this behavior is a difficulty in
identifying the feasible set.

We believed we could make people optimal by training them correctly.
In one experiment, we were able to get 100 percent negative transfer training; so
we could manipulate them, that was clear. But we're at the point in all of our
studies, where we just want people to be acceptable. As long as they do nothing
wrong, as long as they're productive, and what they're doing is heading toward a
solution--if we can just get to that point, we're in a good situation. That attitude
has tended to flavor a lot of the work we're doing now.

The third behavior I call meta knowledge, which isn't a very good term,
but I couldn't think of a better phrase. I wanted to indicate some higher level
things. One big problem we've encountered is that people very quickly learn
what-they'll tell you all sorts of facts about the system; you can test them on
their training, and they know an amazing amount of information about the

207

I _ _9



-. 1 -: : . - " - -: . . : . 1 . . - : .- I.. . . . . . . . .. ..-. - - . . .. T - -

system--they just don't know when. We find you put people into the environment,
and they don't know which piece of all that information to use. The difference is
between system knowledge and operational knowledge, having it in your head and - -
being able to use it. People have difficulty with multiple goals, especially 0

operational goals and maintenance goals. Many accident reports decribe
situations where people have so focused on operations, they ignore the problem
until it overwhelms them, or they have so focused on the problem, they forget to
operate the system and it crashes.

Another thing we found is how people deal with risk. Often people know
the facts, know when to do what they're supposed to do, and have been instructed
on what the tradeoffs are in relation to the risks in the system. In one recent
experiment, when subjects were put into the operational environment and
everything was falling apart, they adopted very different risks from what we
thought they were going to adopt.

What are the implications? There are three types: training, aiding, and
common themes. With the "common themes" I'd like to emphasize, and I've heard
it alluded to in this workshop, that we're getting to the point where it's hard to
separate training and aiding. You can think about the same system actually
serving both purposes. I'll come back to that, but first let's talk about training.

Given all this background, the first question in discussing implications
for training is, do we want people to be able to deal with unfamiliar problems?
The way we do that is to give them experiences in multiple problem domains. For
example, in our training program right now for marine engineers, the first
sequence of training they go through is fixing automobile engines, then aircraft
engines, then marine propulsion systems. The idea is, when you try to teach them
general principles of problem solving on the systems they're familiar with, they
can't tear themselves away from the context. This is a hard concept to sell.
When we first talked to the people who wanted this training program, they were
skeptical about teaching these engineers about car engines. It worked out very
well. It turns out car engines are very popular with people in general, and they
think they're going to learn how to fix their car (sort of as a freebie) while they're
there.

Another implication for training is that the balance between knowledge
of "what" and "when" should be improved by shifting from passive to active
training methods. Too many programs are organized toward passive training
methods. You get a lecture or a film, and jam in a bunch of knowledge and facts.
I remember when I was in basic training, and I got all this knowledge about what
each airplane looked like and how much it could carry. It just wasn't useful to me.
I was inundated with information, and it didn't do me any good unless I knew what
to do with it. To do that, you shift from passive to active methods so people can
be involved. One of the interesting things about active training methods for
multiple domains is that, if, for example, we're training communications
switchboard mechanics, we can't really have people go out and fix airplanes just
because it's good for them. So we end up using simulators, and in this case Al has
a lot to offer.

208



_ . • - . . ... E ..

Li .- -. . . . . . . . .'.

A third implication for training is that we can improve people's abilities
to resolve tradeoffs and choose acceptable levels of risk by, again, active training
methods with context-oriented feedback. Fourth, we can improve abilities to use
available information by using on-line context-oriented explanations and
guidance. For example, if they're switchboard mechanics and they're in the
airplane propulsion portion of the training program and they're trying to figure out
some problem with the airplane system, you explain the principles you're trying to
get across in the context of what they're doing right at the moment.

What are the implications for aiding? One key thing, as I said earlier, is 0
that we should design systems to support any productive strategy the user wants
to choose, rather than just supporting the optimal strategy. We have to define
what productive means in different domains, but as long as the person is moving
toward a solution, then we shouldn't try to force him into a different kind of path.
Interestingly, as long as the person is productive and doesn't have any of these "
other problems, he or she never sees the aid.

We can use the computer to evaluate the consistency and merit of
hypotheses and plans. This is a difficult one to implement because, to get people
to stop in the midst of problem solving and tell you what their hypotheses and
plans are, may not be too realistic. •

The next implication for aiding is important and pretty easy to do. It's
this--determine and display implications of information obtained and actions
taken. People do not take into account the full implications of the information
they collect. The computer, for example, with its topographic knowledge can
show them. It may not know what the best test is, at least not with respect to
their strategy, but it can tell them the implications of what it just found out. e

Next, monitor for inconsistent and erroneous actions. When detected,
provide context-oriented explanations and guidance. We've found that, instead of
trying to force people down the optimal path, think of it in terms of an acceptable
envelope, and as long as they're going through their own world, but are within this
envelope, that's fine. If they start to do inconsistent things, the computer should
come back with a prompt in the context of what they're doing and explain why
they're getting out of that envelope.

Neglected goals are also a very important thing. For example, an
Eastern Airlines 401 crashed in the Everglades because all four people were
absorbed in a light bulb failure, no one was flying the airplane. The airplane
should have been smart enough to know it shouldn't spiral down into the swamp; it
didn't have to know the swamp was there, but that spiraling was an unusual
approach to an airport. The computer should be able to handle those kinds of
things.

One final implication for aiding is more difficult to do for the computer,
but should be doable. We tend to talk about supporting the solution of familiar

problems. Why couldn't we also use the computer, at least in terms of some of
these kinds of things, to support the operator in solving a problem when the
computer has no expertise in that particular problem at all? In other words, some

209

i •



-- i

of the support functions should be generic and not tied tightly to particular
feasible sets of problems.

Now to common themes. One is a notion of experience in multiple
domains, the idea of different kinds of simulators that would support that. Active
training methods get people involved and it's so inexpensive to do that now, it's a
shame not to. In terms of motivation, it seems to me that for some of the
programs we've observed, it would be a major success to get people to stay awake,
and active training does that; people get involved and you get good results in the 0
end. Explanations should be in context whether it's an aiding or a training
explanation. Don't come back and tell someone you got error #43. Explain it in
the context of what they have been doing. Of course that means the system has
to know what people are doing, so it's a little more than just changing the format
of the print-out statement. The system should also be flexible with respect to
strategies people might choose. The last common theme is on-line monitoring and -
feedback and how we can do that.

On-line models for training and aiding (the ones that we are using lately)
would, I think, classify as somewhat archaic Al models. So this addresses directly
the approach of this workshop. There are three things I'd like to mention. First,
what expertise would we like from these models? Because I'm driven by how to , ,
train and aid people, I'm not so concerned by what Al can do for me. I'm more
concerned with telling them what I want. These things I'll suggest aren't
necessarily easy. Second, what functions should be provided? Finally, there are
several issues I want to summarize.

Let's consider the expertise of the on-line models. I would like on-line 0
models to have expertise in contextual elements and relationships. We've also
heard a little bit about expertise in principles of problem solving, but not a full
range of what you might consider. For the purposes of training and aiding that I'm
suggesting, I think it should also have expertise in human problem solving and
limitations. So, you're not only going to have to talk to the person who's fixed the
radio for 20 years, you're also going to have to talk to psychologists. The point is '

that we have to have the system understand the context, but also the human
behavior that is likely to be observed in that context. To me, that's very
important. Some of the aiding notions we've applied that were most successful
were done only after we'd had a series of experiments to understand the behavior
of the people in that environment.

What should these models do? It would be nice if they knew enough
about people to determine the level of a particular individual's problem solving
abilities and identify the most appropriate types of training and aiding. I don't
know how you'd do it, but certainly if you could identify those impulsive people
that sit at the keyboard, it would be very useful because they present a lot of
problems, especially because you can't train it out. -

Second, the models should monitor solution sequences to identify
inconsistencies and errors relative to contextual constraints and principles of
problem solving. We've got a program with NASA right now where this system
monitors what the aircraft crew is doing, and it's not trying to tell them what to

210



J

do or force them or give them optimal feedback; it's just trying to find out if
they're doing things that are consistent with what that airplane is supposed to do.
It turns out, as you may expect, the system has to know one heck of a lot about S
airplanes and what air crews do in airplanes to be able to do that. Finally, models
should provide context-oriented explanations and guidance relative to anomalies
identified and alternative courses of action.

To conclude, I have three issues that are important. One is assessing -

expert knowledge. We haven't been involved with this until recently, and a very S
interesting thing came out. We had subjects who were highly trained in a process
control task, 32 subjects trained over many weeks, and they had previously had 3
years of engineering to be involved in this kind of task. We assessed what they
knew about the system. What we did was to give them pictures and displays and
ask them to explain what they would do here. Very extensive explanations of
many pages were collected. What we concluded is that they were really expert in S
the system, they knew what to do, they knew approriate tradeoffs. Then, we had
the fifth model I was showing you (Figure 8), playing relative to these subjects.
This model received the same training as the subjects, it has these expert rules,
and we wanted to see how they compare. It turns out that the model and the
subjects do the same thing about 70 percent of the time. So we looked at when
they don't agree. The best conclusion, after a lot of tedious analysis is that the S
experts told us different things when we asked them off-line than when we asked
them on-line. The difference was not in specific knowledge, that is the factual
knowledge, it was more in their values and the risks they were willing to assume
or would try to avoid. In other words, what they told us from a factual point of
view of how the widgets connect was good, and they seem to use this information.
But how they traded off risks and how they dealt with the values of the different
goals that were competing, such as, "Do I keep the system operating or do I shut
off the system and protect the resources?" It was very different from what they
said they would do.

Another issue is training vs. aiding. Ive mentioned this before. I think
we can exploit the same technology for both cases. In fact, you can imagine an ....

elaborate scenario in which all new trainees gets a LISP machine when they check
in, and it goes with them through training, goes out with them on the job, and in
our scenario, it's very small and in their watch. This machine can transition from
training to aiding and be involved with aiding them on their task, as well as
involved with learning their task.

Finally, and this may be the most important point, is that a lot of what
Ive heard today and yesterday at this workshop seems to be oriented toward
computerizing. I think we should be focusing much more on computer aiding,
because if we can train people and aid them so we can be sure that they use

* productive strategies to solve problems, then we have people as resources to deal
with other problems in the future. Especially when they run into a problem that -

no one anticipated. The difficulty here is that one strategy you could adopt would
be to say, "Well, we'll just computerize 90 percent of it, and they'll know what to
do." When they type in those symptoms, it just says "replace x," and they do it.
The 10 percent of the time when there are really difficult problems, we'll let
them do those. But, it turns out that 90 percent of the time they're not doing
anything, and 10 percent of the time we're expecting them to react.

211



Let me give you one example of this problem in closure. In our current
ARI project, we have operators monitoring automated communications networks,
and they have to step in when some problem arises. Well, we thought it would be
very nice after studying some systems like the Bell System, to have a lot of
automatic re-routing so the system reconfigures itself when things fail. What we
found is that we had to get rid of that option because, for most of the problems, it
reconfigures and the operator never saw anything.

For the problems that were difficult, such as multiple failures, it would -

keep on reconfiguring, using up resources, until finally there was no solution that
it could find after exhaustively searching. Then it would say to the operator, 'It's
all yours." I think we've got to keep the person involved. Those problems would
never arise if the person was involved, at least at some supervisory level, rather
than having an automatic system.

That's the end of my rapid tour through this work. Thank you.

MS

0

212

- .. . . . . .. .. .. . . . . . • . . .. .. .. . . . . .. .. . . .hm - m um . ..



ABOUT THE AUTHOR

Dr. William B. Rouse is a Professor and Director at the
Center for Man-Machinery Systems Research at Georgia
Institute of Technology. He is also President and Principal
Scientist at Search Technology, Inc. (applied R&D in
computer-based training and aiding). Dr. Rouse is current
President of IEEE Systems, Man and Cybernetics Society.

.1

'0

213

_9



A Generalized Model of Fault-Isolation Performance*

Douglas M. Towne -

Behavioral Technology Laboratorieso University of Southern California0

This paper will briefly summarizea computer-based model of corrective

' maintenance performance, developed to generate realistic fault-isolation

behavior. The model forms the core of a maintainability projection system S

which quantifies the times to isolate and repair a sample of faults in an

existing or planned equipment. Since the projections are a direct result of

the system design, the model can be used to assess the maintenance

implications of design decisions concerning internal organization, packaging

and modularization, and selection of external indicators, controls, and test

points.

For each malfunction of intereit, the model generates a sequence of

tests, adjustments, disassembly/assembly operations and replacements which

isolate and resolve the fault. The testing sequences generated by the model

have been found to correspond well with those performed by maintenance S

technicians in identifying and resolving those malfunctions. The manual

times to perform the projected actions are automatically retrieved from a

data base of predetermined times for generic maintenance actions, derived

from standard motion times. Applying the model to a substantial number of -

possible faults in a system yields a distribution of corrective maintenance

times and such quantitative measures as Mean-Time-To-Repair (MTTR), and the

probability of repair within a specified time.

Since the model projects the actions required to resolve each failure,

the range and character of maintenance activities imposed by the system

design may also be considered. S

* This research was funded by the Office of Naval Research, Engineering

Psychology Group, under contract N00014-80-C-0493. Mr. Gerald S. Malecki
served as scientific officer.

215



System Representation

A specific equipment is represented in a manner which is logically

complete, in that information is provided about the possible effects on each

indicator of failures in each replaceable unit. The notation scheme,

however, is intentionally 'fuzzy', i.e. it does not enumerate the symptom

effects of each possible failure mode. Instead, the following is provided S

for each indicator affected by a replaceable unit:

a. If all possible failure modes in the unit affect the indicator in
one way, then the symptom effect is specified.

b. If different failure modes in the unit affect the indicator in
different abnormal ways, then a symptom equivalent to 'MIXED ABNORMALS'
is specified.

c. If some failure modes affect the indicator, and others do not,

then a symptom equivalent to 'MIXED NORMAL & ABNORMAL' is specified.

The case of no failure modes in a unit affecting an indicator is

implicitly specified by omitting the indicator from the unit's fault

effects specification.

This complete, but non-detailed, scheme allows for very compact

specification of fault effects, and avoids the necessity to determine how

each possible failure could affect an indicator.

Corrective maintenance sequences for faults in three different systems

have been generated by the model to date, and compared to those of 87

technicians. It has been a surprising result that the maintenance

sequences generated by the model correspond so closely to those actually

performed by human technicians when the failure-effects data are so

sparse. Adding more detailed symptom data causes the projections to

differ markedly from observed performance.

It is important to note that this process for representing fault

effects in the model's data base is not arbitrary, and that the uncertainty,

or fuzziness, exhibited by the representation scheme reflects the extent to

which fault effects are confounded as a result of the system design. When

failures in a system produce effects which map closely to the replaceable

216



elements, (i.e. the symptom effects of units do not vary for different

failure modes) then that system's data base will reflect clear and easily

identifiable symptoms. Unfortunately, most systems selected or devised as

vehicles for research in fault isolation have been ones in which the fault

effects are nearly ideal - each unit can fail in only one catastrophic way.

Ideally, a system would be designed in just this manner, so that the

set of indicators affected by a unit is consistent, no matter how the unit

fails. In reality it is often difficult to accomplish this, and the effects

of failures in a unit may vary according to the failure mode. The

maintenance performance projected by the model reflects the increased 0

difficulty of fault isolation when the replaceable units can fail in complex

ways.

Oranization of the Model

The maintenance performance model is organized on two levels, data and

program (see Figure 1).

Data. The data level consists of three types of information:

1) equipment-specific information, describing the equipment design:

* the names of the tests available in the system

* the indicators which are stimulated by those tests

e the names of the adjustment points and replaceable elements

* the possible effects of faults in the replaceable elements

9 the non-conditional times to perform the tests, adjustments, and

replacements (i.e. the portion not dependent upon previous actions)

* the times to perform necessary disassembly/reassembly operations

* the relative costs and reliabilities of the replaceable elements

Figure 2 presents an example specification of a microcomputer design.

217



_intnanc

Control Logic

Test Test Test 9

Selector Performer Interpreter

Calculator II Calculator I

I I .

J0External 
Internal 

-Current Current 
Design Design

Specifications Specifications 
- --Conditions Suspects

6 Te s Indicators 9 Fault Effects

and Adjustments 

•

•Action Times
WORKING MEMORY 

DESIGN SPECIFICATIONS

III

1t 6

218

I *

• I
I]

Calclatr Cacultor ~
. . . . . .



In Repl. Unit
No. Replaceable Unit Name Time Cost Fault-eftects
(1) POWER SUPPLY 196 329 7771778820C000087
(2) CPU 43 5 7777766770000000007
(3) ON-BOARD RAM 51 2 0007100070000000000
(4) RAM CARD 37 195 0000200070000000000
(5) DISK CONTROL BOARD 40 125 o70700787o0o00m0087
(6) ANALOG BOARD 98 100 070T007870000000007
(7) DISK MOTOR 166 25 0007000870000000007
(8) DISK CABLE 71 25 0701007120010000077
(9) PRINTER CHAR BOARD 40 220 0000000080000000000

(10) PRINTER CABLE 23 20 0000000020000100000 RU
(11) PRINTER POWER SUPPLY 72 500 0000000087001000000 SPEC'S
(12) PRINTER INTERFACE BOARD 80 200 0000000080000000000
(13) CRT 23 285 0019999900000001000
(14) CRT FUSE 9 1 0019999900000011000
(15) CRT CABLE 35 20 0019999900000000100
(16) SYSTEM DISKETTE 14 5 000700087C0000C000
(17) MOTOR SPEED ADJUSTMENT 85 0 000700087C0000C000
(18) DISK HEAD ALIGNMENT 55 0 0007000870000000000
(19) DISK HEAD TRAVEL ADJUSTMNT 69 0 0007001370000000000
3 L 1 2 6 7 4 6 3 6 4 3 2 2 8 1 4 T 10 (relative failure perCentaes)

Test Test
go, Test Name Time Indicators Monitored
(1) SYSTEM BOOT 36 1 2 3 4
(2) RAM DIAGNOSTIC 301 1 3 5
(3) CPU DIAGNOST:C 78 1 3 6
(4) DISK HEAD TRAVEL DIAG. 54 1 2 3 7
(5) DISK READ/WRITE DIAG. 29 1 2 3 8
(6) PRINTER TEST PRCGRAM 65 1 2 3 4 9 10
(7) MAINFRAME POWER TEST 57 11
(8) DISK CABLE CONTINUITY 109 12 TEST
(9) PRINTER POWER TEST 88 13 SPECIFICATIONS

(10) PRINTER CABLE CONTINUITY 57 14
(11) CRT FUSE CHECK 109 15 
(12) CRT HEATER CHECK 88 16
(13) CRT CABLE CONTINUITY 57 17
(14) DOWNSTREAM VOLTAGE TEST 57 18
(15) DISK ROTATION CHECK 24 2 19

Fault RU
No. No. Fault Svnntcr=s
(1) 1 110132222010000C011
(2) 2 1111999920000000001
(3) 4 00002000200000C000 FAULT
(4) 6 000100012000000C000 SPECIFICATIONS
(5) 17 000100012000000OOO0
(6) 7 0001000120000000001

L (7) tO 000000002CoooCCooo_
(8) 16 00020003000000ccooo

Figure 2. Representation of Comnuter System 0 .

219



2) working memory, which reflects the current status of a maintenance

problem in progress. The primary contents of working memory are a)

likelihood measures for each replaceable unit, and b) current values of

various equipment conditions which can change during maintenance work.

The likelihood measures are derived from numerical scores, maintained

for each possible fault or mis-adjustment. The score for a replaceable 0

element reflects the difference between the symptoms already received in a

problem and those which the element might have produced, if it were the

failure. Consequently, a relatively low score indicates a close fit and a

likely source of the symptoms received.

The equipment conditions reflect the status of various attributes of

a system, such as the extent to which it has been disassembled. This

information is maintained and accessed by the model to determine the

time required to perform various possible maintenance operations.

3) parameter values, which express a) the urgency of the maintenance

environment, and b) the availability of spares. These affect the model's

use of hardware substitution as a means for effecting rapid equipment

restorations.

Program. The computer program contains two levels of control

mechanisms, although these are not clearly partitioned as separate entities.

At the top level is what may be regarded as generic maintenance control and

planning logic.

This control structure invokes the lower-level functions in a relatively fixed

sequence, as follows:

220



REPEAT (for each fault examined)

SELECT THE NEXT OPERATION.
(and add its context-dependent performance time
to the cumulative total)

If Adjustment or Replacement was selected above:
SELECT THE SHORTEST TEST WHICH MONITORS THE SYSTEM.

(and add its performance time to the total)

else DETERMINE THE OUTCOME OF CONVENTIONAL TEST.
(by fetching the symptom produced by the true fault)

UPDATE THE LIKELIHOODS OF THE POSSIBLE FAULTS.

UNTIL no fault •

Thus the model involves operators for selecting tests, performing them,

and evaluating their outcomes, as described further below.

1kS

Test Selector

At each decision stage, the test selection algorithm forms an ordered

set of n productive tests, with test 1 being the test of highest fault- 0

isolation value, and n being a parameter set to less than, or equal to, the

total number of tests available. The value of a test is computed as the

ratio of the test's likely information value to its performance time. Both

of these quantities are sequence-dependent and are re-computed at each

stage. The definition of a 'test' is unconstrained so that any operation

potentially capable of providing new information is considered for selection.

Thus adjustments and replacements are included in this evaluation of what

to do next.

The general rules applied to select the next operation consider all of

the following:

* the relative reliabilities of the replaceable elements

0 the costs of the replaceable elements

* the current likelihoods of the possible faults

* the times to perform the operations, in the present context

9 the new information possibly obtained from the operations

221
- 9



Since only productive tests are included in the set, previously

performed tests, and tests which have no new information to offer are not

considered for selection. The values of the n possible tests are then

normalized, and a test is selected probabilistically according to the

relative values.

With n set to 1, the model selects the best available test at each

decision point. The resulting testing sequences are potentially useful for

instruction and performance-aiding, but are not maximally representative of

performance by human technicians. With larger n, non-optimal tests are -

considered for selection. Since probability of selection is related to •

computed value, however, extremely poor tests are rarely selected by the

model. The fault-isolation sequences of the model corresponded best with

actual troubleshooting performance with n set equal to three. .

The selected operation may be a replacement, as well as a test or

adjustment, because replacements (followed by confirming tests) provide

new information about the system. In early phases of problems,

replacements are not usually attractive choices because they offer little

information compared to other tests. In addition, their relative time

investment is often large, since the time to obtain new information

includes the time to access and replace the part plus the time to perform -.

a confirming test. Later in problems, however, replacements may offer

more information than the remaining available tests, for the time

investment involved.

Like many human technicians, this decision logic may decide to replace

an inexpensive part prior to obtaining complete proof of its failure, if the

time to replace is low compared to the time required to complete the

necessary confirming tests. Excessive behavior of this type by human

technicians is termed 'Easter-egging' and is costly unless the replacement

parts are extremely inexpensive. The maintenance model considers component

costs to avoid Easter-egging, but it will resort to swapping _ _

moderately-priced suspected elements if the times of the other useful tests

are excessive, and the maintenance environment is sufficiently urgent.

222 0



* S i

Following a replacement, the model performs the shortest available test

which is sure to be abnormal if the fault persists. This is often chosen to

be some test which previously yielded an abnormal result, although some

other test could be selected if considerable reassembly is required. The

model continues to generate maintenance operations until the assumed fault

has been rectified by a replacement or adjustment, and normal system

operation has been confirmed.

Test Performer

The test performance function simply appends the selected test to the

ongoing sequence, along with any disassembly or reassembly operations

necessary to satisfy conditions for performing the test, and adds the

performance times to the cumulative total. Finally, it fetches from the 0

data base the symptoms which would be obtained if that test were actually

performed.

Test Interreter

The test interpretation function compares the symptoms received from

the selected test to the possible fault effects of the replaceable units.

It computes a difference score for each unit, which varies according to the

difference between the unit's possible fault effects and those received from

the test performed. These values are then added to the cumulative distance

scores, and normalized likelihoods are computed from the scores. S

If the system's replaceable units can fail in multiple modes, the

model may, at times, perform tests which turn out to yield no useful

information. Suppose, for example, three units (A, B, and C) are

suspected, based upon prior symptoms. Suppose further that only unit A

could affect test 1, if it fails in a particular mode. If test 1 is

performed, and an abnormal result is obtained, then the fault is known to 0

be in unit A. If a normal result is obtained, however, nothing is learned

except that part of unit A is operational. It is seen that normal results

223



are useful for eliminating a unit from suspicion only if the element

always produces an abnormal result on the indicator, when it fails,

regardless of its failure mode. When replaceable units are functionally

large, they tend to exhibit more failure modes, often including a mode in

which there is no effect on indicators intended to monitor those units.

Consequently, the model finds normal symptom information to be less

useful than abnormal symptoms, in many cases. Thus, if a designer were to

revise the modularity and/or packaging of the replaceable units, the model -

would sense the fault isolation implications.

224

- 9



- 1..-. -. ..

ABOUT THE AUTHOR

Dr. Douglas M. Towne is Director of the Behavioral
Technology Laboratories, University of Southern
California. He has performed research in troubleshooting
and human task performance, optimization of serial-action
task sequences, and development of computer-based
training systems. Dr. Towne holds a Ph.D. in engineering
from the University of Southern California.

225

-9



The Psychology of Technical Devices and Technical Discourse ...

David Es Kleras

(Department of Psychology

University of Arizona

(V) Tucson, Arizona 85721

This paper Is concerned with some issues in cognitive

psychology that are relevant to the general question of what S

S artificial intelligence techniques can do toward the solution of

problems concerning equipment training and maintenance. Three

topics will be discussed. The first Is the nature of expertise in

electronics, which is not very well understood. This is a problem

because if the goal is to design an AI system that behaves like an

electronics cxpert, or can help ordinary people become electronics

experts, it is difficult to see low this could be done without 0

understanding the nature of electronics expertise. The second

topic Is the relation between instructions and expertise. it

would seem that there should be better ways of organizing

operating instructions, but our intuitions can be seriously wrong.

The third topic is technical documentation. Even in an AL

computer-based system, the user will have to read and understand

material in order to learn and carry out procedures. Here there 0

Is a striking opportunity for the application of Al techniques.

There is a long history of success in Al work on language

processings and cognitive psychology has a substantial

accumulation of theoretical and empirical work to contribute.

Thus, solving sore of the problems In technical occumentatlon is a

227



"target of opportunity" for the application of Al techniques.

Ills BDAItLI g1 LSLZPXLD.Lz LA211LLAZ

There has been very little work done in experimental

cognitive psychology on the nature of electronics expertise,

although there are several important areas of expertise that have

been investigated. The relevant form of electronics expertise is

the kind acquired through years of interacting with electronic

equipment for the purposes of maintenance and construction. There

has been some work done In cognitive psychology with regard to

electrical theory from the viewpoint of expertise in physics, or

expertise acquired during engineering training. Howeverp In

neither case does this relate directly to the expert with "hands

on" experience.

Here a brief description will be provided of some work that

has been done on electronics expertise in my laboratory. More

detail on these results can be found in Kieres (1982) and a

forthcoming technical report.

In the first experiment, experts and nonexperts were asked to

describe actual devices presented to them. The experts were

typically individuals with several years of actual working -

experience with electronic devices. The nonexperts were students

recruited in the usual manner done in psychology experiments. The

subjects were asked to simply describe everything they could about

the devicesp from the point of view of one having to explain our

technology to a technically sophisticated visitor from another

planet. The subjects' verbal and motor behavior were recoroed on

228



videotape# whIch Was then scored for content. The devices In 0

these experiments ranged from everyday devices such as an alarm

clock and a tape recorder# to devices familiar mainly to experts,

such as a standard volt-ohm-milliameter (VO1IlP to devices unusual

and peculiar even to experts. In a second experiment, to be

described in more detail below, subjects operated pieces of

equipment of varying familiarity from instructions, either

mandatorily read, or optionally read.

The results of these experiments can be briefly summarized.

First of all, expertise Is very complex in that it is not Just a

knowledge of electronic circuitry# but also contains several other "

kinds of knowledge about electronic equipment. Experts have a

greet deal of what might be called "surface" information about

electronic Cevices. This is information about what electronic

devices typically look like, how they are constructed, and what

the controls feel like when they are manipulated. All of the

subjects# especially the experts# In the first experiment

manipulated the controls on the devices at great length.

Furthermore, many subjects recognized a device very quickly*

apparently on the basis of just a few features. This was

especially striking with some of the unusual devices, which

experts would classify on the basis of a few global features, such

as a centrally located meter, or a large calibrated dial. It also

appears that expert subjects have a certain physical smoothness

and fluency at Interacting with equipment* For example, in the

instruction-following experiment, experts were not only faster

overall than nonexperts, but were very fluent at performing

229

-S



complex physical actions such as plugging in a cord. There were 0

many cases of nonexpert subjects fumbling while trying to plug in

an ordinary line cord. In contrast# experts perform very smoothly

and efficiently. Experts also do quite a bit of exploration of -

the device and examination of small components.

In general, experts show a deep richness in their behavior#

in that they can unpack their knowledge at any level of detail,

but are nonetheless sensitive to the task domain. In the device

description experiment, expert subjects would sometimes comment

that, of courses they could provide a full description of how a

piece of equipment operated, but they assumed that this was not"- 0 _

wanted and instead provided descriptions of how to operate it.

Other expert subjects went into great detail on small features

such as the characteristics of the Pilot light bulb on one of the

devices.

Experts# howevert could get confusedp and were prone to make

mistakes, although their overall performance was impressive.

Where they got into trouble concerned cases of trying to go too

far on the knowledge that they had available. For example, some

experts were confused by a novel device which did not obey the

convention that terminals on the left-hand side are input

terminals. One such subject entirely misconstrued this device as

a result. In other casess expert subjects are able to pursue

paths through a device operation task that nonexpert subjects

simply do not have available, and when this path is in fact an

Incorrect onet the expert may end up being worse off. For

examplep one expert subject in the optional instruction condition

230

I ~ l - . . . .- . . . . . .. . . . .i l - . . . . . .. -/ .. ... .. ... . . . .. . .. . ... . .



.11.....

of the second experiment attempted to carry out the task of 0

measuring the resistance of a resistor with a volt-ohm-mlllismeter

(VOM). The meter on the VOM had been set off of zero in order to

have the subject carry out a slightly more complicated task. One

subject did not notice this, and when the measurement on the

resistor did not agree with the markings on the resistor, he

proceeded to disassemble the VOM and test its batteries. After

this fruitless effort, the subject discovered that the meter was

off zero and then was able to complete the tasx. Thus, while

experts are generally impressive in their performance, their

knowledge can occasionally mislead them when the device does not ..

correspond well to what they have been led to expect; meters are

usually satisfactorily zeroed.

Thus, e-.perts apparently think of devices in terms of the

conventional surface features, such as appearance and layout, and

have strong expectations about what is normally present on such a

device, and the normal state of affairs. This kind of

expectation-based knowledge has been described recently in

cognitive psychology as laf.M& knowledge, (see Rumelhart E Ortony,

1977). A schema Is an organized piece of memory information that

specifies or describes classes of objects in terms of their

typical features. The notion Is very similar to the concept of

LEAzjzp but It is much older.

Furthermore, subjects show a sensitivity to patterns and

expectations not only at the level of the entire device, but also

Its sub-parts and even its individual controls and connections.

Thus, knowledge of devices must be organized in terms of a

231



5 0/

hiaLE of schemes. Thus, one can describe an expert's

knowledge of a class of devices, such as radio receivers# as a

hierarchy of subdevices, each belonging to a schematic class.

Each one of these subdevices can then be described in terms of

other subdevices, until eventually we get down to individual

common components, both internal ones such as resistors and

capecitors, and external ones such as switches and indicators.

In Tables It ZP and 3 is shown the possible contents of such

a schema for a simple radio. In the radio schema# a radio is

portrayed as being made up of three subdevices, namely a power

supply devices a tuning oevice# and an audio output device. Each 0

of these devices is in turn described by a schema, and with each

such schema also appears schematic procedures for operating the

device. For example, the power device is made up of a schematic

power cords power switch* and pilot light. The schematic

procedure for operating the power device is to plug in whatever

power cord the device usesp and operate whatever power switch the

particular device has, and check whatever type of pilot light the

device has. Any one particular device will have a particular

instance of the class of power cords, power switches, and so

forth.

By using general schematic knowledge of this sorts an expert

could figure out how to operate a novel device. For example, he

or she would know that a novel radio must have a power switch on _

It somewhere, and that the first stage in the operation of the

radio will be to turn the power switch on. Moreover, if the

device Is a completely novel ones unique in the expert's

experience# it will still be assembled from familiar subdevices.

232

b . . -0



Table 1

Schema for a Radio S

STRUCTURE

power-device

tuner-device

audio-device

LAYOUT

box shape

medium size -

tuner-device on front

audio-device on front

tuner-device right of audio-device
i- S

OPERATION

IF (Goal is to listen to station X)

THEN (Do power-device operation

Do tuner-device operation

Do audio-device operation)

HOW-IT-WORKS

station sends signal to tuner-device

tuner-device sends signal to audio-device

audio-device sends sound to user

power-device supplies power to tuner-device, audio-device

BEHAVIOR

233

_9



Table 2

Subscheira for Power-Device 0

STRUCTURE

power-cord

power-switch

pilot-ilight

LAYOUT

power-cord on back of device

power-switch on lower front of device

pilot-light on front of device

OPERATION

IF (goal Is to power-up) -

THEN (plug in power-cord

turn-on power-switch

check pilot-light)

IF (goal Is to power-doon)

THEN (turn-off power-sfitcn)

HOW-IT-WORKS

electricity from plug goes ttrough cord to the

power-switch which controls whether electricity

goes tn device.

BEHAVIOR

------------------------------------------------------

234



Table 3 0

Subschema for Tuner-Device

STRUCTURE

antenna

dial

knob

selector S

LAYOUT

dial on front middle of device

large knob to right or below dial

antenna on beck top of device

OPERATION S

IF (goal Is to select station X)

THEN (turn knob until dial reads X)

HOW-IT-WORKS

antenna sends signal to selector controlled

by knob, selector chooses signal, sends to

rest of device S

BEHAVIOR

023

235



C

Thus, the expert will have a large variety of schemas which will

partially match with the appearance of the device. The expert can S

recognize familiar configurations of controls on the front panel,

and can eventually assemble a description of the device from the

subsohemast and deduce how to operate It.

At this point, this schema-based description of knowledge of

devices musL be regarded as being speculative, rather than

strongly supported by data. However, if a goal is to construct an --

Al-based system that knows about devices in general, such a

hierarchical schema format for this knowledge may in fact be a

very good idea# because this appears to be a good description of

experts' knowledge. ..

The point of this work on the nature of expertise is that

electronics expertise is not very well understood, so we do not

really know what is important about it. For examplep experts have -

detailed knowledge of the surface properties of electronic

equipment. Is this important to being an expert? Perhaps there

are some implications for the design of electronic equipment. In "

older equipment the relative positions of controls was largely

determined by the requirements of the circuitry and the physical

nature of the components that the Knobs were attached to. But,

the newer solid-state eauipment makes it possible to arrange

controls in essentially arbitrary arrangements. Is It possible

that with modern electronics technologyp experts are losing some

important cues in their ability to interact successfully with

equipment? Very little is known about such matters, and further

research is very Important.

236



This section presents a very practical example of the danger

of trusting one's Intuitions with regard to expertise and the

design of job-aiding systems. This question was addressed In the o_"

above-mentioned experimert on instruction-following in terms of

the Issue of whether there would be any relationship between the

optimum instruction format and the expertise of the user and the

familiarity of the device. Six devices were useds of varying S

familiarity$ a portable AM-FM radio, a cassette tape recorder, a

VOM an oscilloscope and signal generator combination, a

phi-phenomenon demonstrator, and a physiological stimulator.

Again, the experts were people with several years working

experlencep and the nonexperts were ordinary student subjects.

The two Instruction formats were intended to determine the

truth of an obvious intuition about Instructions' Step-oy-step

Instructiors should be Inferior to an organized "menu" format

which allows the user to choose the instructions they wish to

read. Thus, instructions for operating a piece of equipment could

be in the form of a simplistic list of the Individual steps, or in

a more "intelligent" fastion that would make it possible for a

person who is familiar with the equipment to sxip large portions

of the instructions* This was accomplished with a hierarchical

menu of instructions, which decomposed the operating procedure for

the device into two or three levels of subprocedures. The very

bottom steps in the hierarchy were the very same operating steps - ...

as used in the step-by-step Instructions.

It Is interesting at this point to predict what the effect of

these instructions would be. Intuitivelyp and based on work _0

237

A-I



conducted by Smith and Goodman (1962)p one would expect that the ...

menu Instruction format would be generally better, both because of

the greater structure it gives the instructions# and also because

It would allow people to use their knowledge of how to operate the

equipment. People who knew how to do a task would not have to be

forced to read every Individual step in the Instructions.

In these results there was no overall advantage of menu

instructions at all; in fact, the group who used the menu •

instructions were somewhat slower overall in completing the tasks.

Table 4 shows the average total times to complete the six

different tasks for the expert and nonexpert subjects using each -

Instruction format type* The percentages show the percentage gain

obtained by using the menu Instructions, compared to the

step-by-step instructions, If the device is familiar, which is

more likely If the subject Is an experts the menu instructions are

superior. However, if the device is unfamiliar# such as the VUM

to the nonexperts, or the stimulator to the experts, Instead of a

not gain, we see either little gain, or a very substantial

impairment in speed of corpleting the task.

Apparently, in this experiment, subjects who thought they

knew something about the equipment would try to operite it on 0

their own, reading little or none of the Instructions, but would

eventually discover that they had done something wrong* For

example, one expert plugged the indicator light into the wrong

Jack on the stimulator, and spent a considerable amount of time

trying to get It to light before deciding that "when all else

tailsp read the instructions."

238

0



Table 4

Mean Total Time for each Devlcep

Instruction Format# and Expertise Group

----------------------------- i ------------------ 0

Radio Recrdr Yom Oscil PhiDem Stim

Step-by-step 224o3 216.3 270.6 604.3 260e4 359.5

Menu 100.9 158.2 462.8 723.6 196.9 378.0

Z Gain 552 272 -71% -20% 24% 5%

Step-by-step 147.0 186.4 189.5 404.4 160.6 269.2

Menu 78o3 108.8 156.3 387.4 142,6 373.5

2 Gain 472 412 172 4Z 11% -39Z

239



Thus, the intuitive superlority of menu instructions appears

to be obtained only when the subject has considerable familiarity

with the specific piece of equipment. Merely being an expert is

not necessarily enough. It should be cautioned that this is not a

definitive study on Instruction format and presentation. But It 0

does show that one's intuitions can not be trusted.

Itts Era~llm at Ias ll Runatal±nn

Essentially every piece of equipment used in the military and

Industry Is accorpanied by a technical manual which usually Is the

only single comprehensive documentation on how the equipment works

and how it is to be maintained and used. The volume of this --

technical documentation is astoundingp and has Increased very

rapidly since the "high-tech" era in military equipment began.

The procurement process for equipment is such that developing -

high-quality technical manuals generally receives low priority,

and thus It Is generally agreed that there are serious problems in

quality of the manuals (Bond £ Towne, 1979). Furthermore, the

!S
volume of the technical manuals and the problem of keeping them

up-to-date are substantial problems just in themselves.

Clearly there will be some gains from replacing paper manuals

with some form of computer medium. This might help solve some of

the logistical problems. But the problems with the current

manuals are mainly a problem of what the manuals Zajx not the

medium in which they are prepared. Thus, in order to really have -

an impact on the quality of technical manuals, attention will have

to be focused not on just their packaging, but also on their

content.

240

i k



[b

Two major problem areas in technical manuals can be

Identified. The first Is clarity; most manuals are muddled,

densely written, and suffer from poor layout and design. The

second is selection of content$ Most manuals provide large

amounts of detail on a variety of subjectsp such as how the 0

equipment works* how to Install it, how to use it, and how to

troubleshoot It* How much of the detail Is necessaryt and how

much simply gets in the way? What Is needed are tools for helping

the writer ensure both greater clarity and a more usable selection

of the content. Such an approach would provide a system like the

Writer's Workbench developed at Bell Labs# but one that is

considerably smarter* Al techniques can provide the necessary 0

language processing technology# but, what the system should gg

needs to be determined by the basic research on comprehension

processes. -

It should be noted that developing a writer's aide system is

Practical. because the material that has to be processed can be

limited in complexity both syntactically and semantically# and

some of the major writing problems can be identified with only a

limited depth of understanding on the part of the program. In

Particular# such a system does not have to be able to parse any

sentence# but rather only the sentences that a typical recruit 0 _

must be able to parse; this is a much simpler probleml

Based on my own work, three problem areas where a writer's

aide system would be of value can be described_

5isalzqDial h2Xui1:2n1 rkmaj We have conducted a

series of evperlments on the role of how-it-works knowledge in

learning how to operate a piece of equipment. This Is described

241

. o . .0



in *ore detail in Kieras & Bovair (1983)p and in additional

reports now being prepared* The typical technical manual for a

piece of equipment has extremely complex and extensive

how-it-works information in it. For a device such as a shipboard

radar sets the level of detail goes down to the Individual

resistors and capacitors in the circuitry. While it is clear that

a ship-yard troubleshooter will need more information than a

typical operators It is not clear which information is actually

needed for what kind of user. Perhaps If this could be

determined# technical manuals could be much shorter and more to

the point.

We have done a series of experiments in which People learn

how to operate a simple control panel devices a sketch of whose

front panel Is shown In Figure 1. Subjects were asked to do two

kinds of tasks: In one, they were to learn a series of operating

procedures, in which the goal was to get the PF Indicator light to

flesh. In the other, they had to inter these procedures without

any explicit training. Two groups of subjects performed these

tasks: the LB g group did this learning or inferring with no

information about how the device works. Another group, the *~dCI

group# studied what we call a "device model." This consists of a

block diagram, shown in Figure 29 along with roughly two pages of - -

descriptive material that explain the block diagram. To make this

technical information interesting and enjoyable for college

student subJects, we placed this device in the context of "Star -I.

Trek." Subjezts were asked to pretend that the control panel Is

for a "phaser bank" aboard the starship £DZlBLIr&I,

242



• -.. .. .-'- 7 - -- -7.. . . . . . .... . .. . . .• - " -- . . . . - -

0

ES Indicator HA indicator

0 0
PF Indicator

MA00
SP indicator

0 SA

VFM button FS button

ES selector
SP switch

Figure 1. Sketch of the front panel of the artificial device.

Table 5 summarizes the effects in the learning experiment.

We observed large Improvements in learning how to operate the

device; a typical effect size is 20. Also# subjects with the

device model are able to devise more efficient procedures than

those Instructed.

In the inference experiments# people with the device model

are able to infer how to operate the device without any expllcit

Instructions much more readily@ The rote group discovers the

procedures by lengthy trial-and-error, while model group subjects

can infer the procedures almost imvediately. These effects are - S

especially strong when subjects must operate the device when it

has simulated malfunctions of some of the Internal components*

243

1~ -- 9



~0

U 
03

040

P-4

19.

I) g

44

244.



TABLE 5

Summary of Results on Learning Procedures

with and without a Device Mlodel

Group

Measure Rote Model Improvement

-- -- - - -- - - --- -- --- --- -- --- - -M-- --- --- -- -- -- --

Moonr Procedure Training Time (secs) 270 194 262

Mean Correct Procedure Retention 672 602 192

Proportion of "short-cuts" (more 6t 402 4002

efficient procedures) done when

possible_

Mean execution time of retained 20.1 16.8 17X

Instructed procedures (secs)

245

- - - - - -- - - - -



Finally# it is not the highly motivating fantasy context of the

device model that was effective, but rather the girMLta galagx,

This is the configuration of components, controls, indicators# and

the connections between them. In short, it Is the information

contained In the block diagram for the device. 0

These results led us to a criterion that the important

Information to include in the how-It-works section of a technical

manual is information about the circuit topology, especially with 0

regard to the controls# that is specific enough to enable the user

to infer the exact operating procedures or troubleshooting

procedures for the device. Information that is not specific and

relevant enough to support these inferences, such as metaphors or

analogiesp is simply not useful and could be excluded. In related

work done with a simulation model, I have aemonstrated that this

circuit topology information is in fact adequate to account for

the types of inferences that need to be made, and apparently for

some of the details of human performance in this situation as

Iell

Thus, only certain how-it-works Information is needed for

users or troubleshooters of equipment. Since technical manuals

usually go into extreme detail, more Information is probably being

included than is necessary. A possible application of Al would be

a system that could help determine what portions of the

how-it-works information is actually needed by analyzing which

Information Is actually required to support inferences aoout

operating procedures and the location of malfunctions. Sucn a

system would be useful both In documentation preparation, and also

as an on-line assistant that would access the full date base on

246

0



the equipment and display only the relevant portions of it to the

troubleshooter.

Since the problem is one of defining the information tnat is

LAClhA01 to a malfunction, rather than identifying the actual

malfunctlon, this should be technically feasable with current Al

techniques.

EZLC*dULjj injILugligD1, Another Important type of material

in technical documentation is information on agi IQ U&g the piece

of equipment. This raises the question of how the user acquires a

procedure from instructional prose. In the current theory of

cognitive skills (Anderson, 1982), procedural knowledge can be - S

represented as production rulesp which are IF-THEN structures

similar to those used In expert systems, but usually with a more

elaborate and explicit control structure. In these terms#

understanding written Procedural instructions corresponds to

translating the written prose Into a production rule

representation. If so# then the quality of Procedural

Instructions Corresponds to the ease of Performing this b .

trans I at ion.

In work done by Peter Poison and myself# we tried out this

Idea on a portion of IBM's training documentation for their S

Displaywriter word processor. An example Is Figure 3# which shows

a Page of training Instructions on how to delete items from the

text. We simply carried out a very loose translation of the

instructions into production rules. Even though these materials

initially struck us as being of very high quality, we were amazed

at some of the problems that this simple analysis revealed, For

example, notice the statement roughly half-way down the page, in _

247

-L S



MAKING DELETIONS

IF goal:delete text X The first revision requires that you delete the word
THEN do stzp I regular" and then add the word "large."

IF goal:do step I The first step to delete text is to move the cursor
THEN move cursor to X(first) under the first character to be deleted. This tells the

Note:deletion starts at system where the deletion starts.
X(first) 0
do step 2

MOVE THE CURSOR UNDER THE FIRST "r" IN "regular."

IF goal:do step 2 The next step is to press the DEL (Delete) key.
THEN press DEL

do step3 
PRESS THE DEL KEY (located above the CHG FMT key).

IF goal:do step 3 and When the system prompts, Delete what?, type the
prompt - "delete word" last character of the text to be deleted.

THEN type X(end)
Note:cursor moves to
X(end) WHEN Delete what? PROMPTS, TYPE: r
Note:X(first) to X(end)
highlighted
do step 4 The cursor moves to the last character.
Note?highlighted characters
vill be d-.leted All the text from the first character through the last

character is highlighted. You can see exactly what is -

going to be deleted before it is deleted.
IF goal:do step 4 and If the wrong characters are highlighted, press

highlighted 0 X CODE * CANCL and try again.
THEN type CANCL

add goal:TRY AGAIN When the text you want to delete is highlighted,
press the ENTER key.

IF goal:do step 4 and PRESS ENTER.
highlighted - X

THEN press ENTER
Note:highlighted word The highlighted word is deleted, and the remaining *
now deleted text on the line moves over to take its place.

MAKING ADDITIONS

The cursor is already at the point where you want to
add the word "large," so you simply type the word.

TYPE THE WORD: large

Revising a Letter 8-3

Figure 3. A sample of training materials for a word processor, showing

the informal production system translation.

248 0



0

which if the to-be-deleted material is not highlighted# the user

is Instructed to cancel and try again. In production rule

notation this translates to adding a goalt TRY AGAIN, to the goal

stack that has the problem that there are no production rules

available that wIll satisfy it.

Thus, instead of simply acquiring these production rules, the

user of this manual must first infer what the intended production

rules were supposed to be, and then troubleshoot and debug them.

Let me point out that although this particular flaw appears to be

obvious now, It certainly was not obvious either to the preparers

of this otherwise high-quality material, or to ourselves. There - .

are many other examples in this one sample of material.

Perhaps an AI-based system can help with this problem by

attempting to translate Procedural Instructions into production

rules. If this translation is hard to accomplish, then the

instructions are not clearly written* If the resulting production

rules have obvious logical flaws in them, such as in the above

example, then the instructions are not adequately clear. What

needs to be done is the relevant research to determine whether

procedural instructions that meet this criterion of easy and

correct translation Into production rules are actually easier for

people to follow and to learn from.

Qjgumialr.t ;AjjLx. The clarity issue is a complex one; it

has been difficult to characterize the overall comprehensibility

of a Piece of prose. Although readability formulas have been in

existence for many years, they have been under heavy attack

recently both because of their lack of any theoretical rationalep

and also because of failures to demonstrate substantial

249



improvevents in the comprehensibility or usability of material
0

that has been made more £rzi A3 by this criterion. Duffy and his

associates at NPRDC (Duffy E Kabance, 1982; Duffy, Sass Currant

1982) have conducted several experiments attempting to demonstrate

that the comprehensibility or usability of technical documents can 0

be improved, either by improving their readability formula scores,

or by large-scale changes performed by- professional documentation

firms. This effort has not yet succeededo which demonstrates that

again one can not trust one's intuitions in this regard. When

such counterintultive empirical results ale obtained# it is a

strong signal that we do not understand the Psychological issues

involved. Much more research work is clearly needed. We are

currently engaged in some preliminary work with simulated

technical manuals for tte above "Phaser bank" device. This Work

suggests that certain types of changes in the manual can make •

substantial differences in how well subjects can use the manual to

learn how to operate the device. These changes concern the

details of the information-processing demands on the reader#

0
rather than gross readability measures or document design changes.

Once the empirical situation is understoodp an Al-based

system could be developed that would provide some of the functions

0
of systems such as the Writer's Wor4bench, but In a more useful

and precise way. The information that is needed to specify such a

system is the results from basic research on the comprehension of

technical Prose, which can reveal what actually impairs _

comprehension. Then a straIghtforward rule system organized

around a powerful parser can be used to detect these

comprehensibility problems. Again, while this is a target of

250



opportunity for the application of Al, what Is missing is the

sound research base in psychology that would allow this technique

to be of definite value.

The above discussion has been intended not only to inform the

reader about some of the psychological Issues Involved in the

application of AI to maintenance situationsp but also to inform

non-psychologists of how important it is to get a grasp on tne

psychological problems Involved. More specifically, many

proposals for the application of AI in maintenance problems have

as their goal the improvement of the working situation and

productivity of some human being, such as the troubleshooter or

maintenance technician. however, many of these efforts,

especially those developed by AI researchers# do not take into

account any information about the actual psychology of the user.

For example, complex Information display systems are being

developed that might be completely useless because they will

overwhelm the human information-processing capacity; complex

maintenance-aiding systems are being developed that might turn out

to be of little value when actually used in the field. An example

of this problem is the finding described above that menu

Instructions are no better overall than step-Dy-step instructions

and can actually be worse in certain situations. Considerable

time and money can be spent on orga-nizing proceojral Instructions

into conceptual hierarchiesi, but unless the psychology of the user

Is considered, the result may actually be worse than simply

copying existing Instructions into a computer medium.

251

!-.9



In short, application of artificial Intelligence technology

to maintenance problems without considering the powers and S

limitations of natural intelligence can easily be a fantastic

waste of time and money. It should be noted that in many cases an

evaluation can be conducted of whether a proposed AI system will

be of value J1Lngz tie system* or even Its prototype# is

constructed. For examplep the system can be mocked-up and tried

out. An example of ttis approach is in my project concerned with

developing an AI-based system to help the technical writer. Since S

I can specify the problems that such a system should be able to

detect without actually constructing it, I can then mock-up the

results of using such a system and compare this mock Improved

technical manual with an original technical manual. If I fail to

got any Improvement in the usability of the manualp I can conclude

that even If the system was develooedp its use would not be of any

advantage. I can then make an informed choice about the -

desirability of spending resources on creating such a system.

Clearly this approach could be used widely in the development of

Al-based maintenance systems.-

Acknohledgement

The work described in this paper Is supported by the Office

of Naval Researchp Personnel end Training Research Group, under •

Research Contracts N00014-81-C-0699, N00014-83-K-0Z24, NP 667-453.

NR b67-513o andp In collaboration with Peter Polson, University of

Colorado, by the IBM Corporation.

252

• .* o . . . ..



References

Anderson, J. R. (1982) Acquisition of cognitive skill.

EXhAxn~aigai &&Xitxp 12P 369-4.06o

Bond, N. C. &Towne, D. Mi. (1979) Troubleshooting complex

equipment in the military servicest Research and prospects.

Technical Report No. 92, Behavioral Technology Laboratories#

University of Southern California, December.

Duffyo To Moo, Kabance, P. (1982) resting the readable w~riting

approach to text revision. Naval Personnel Research and

Development Centerp Technical Report.

Dutfy, To Mo, Sasso 0., E Curreant To E. (L982) Job reading tasks

and the design of technical text. Paper Presented at the

meeting at the American Education Research Association, New

York*

Kieres, 0. E. (1982) What people know about electronic devicesl

A descriptive study. Technical Report No. 12

(UARZ/DP/TR-82/ONR-12). University at Arizona, October 1.

Kieras, Do Es E Bavair, S. (1983) The role of a mental model In

learning to operate a device. Technical Report No. 13

(UARZ/tP/TR-83/ONR-13). University of Arizona, March l.

253



Rumelnartt D. Est E OrtonYv A. (1977) The representation oft

knowledge in memory. In R. C. Anderson# R. J. Spiro#

Es Montague fEds.)p I~tgai1na ACI thlc BARgiliiif 21 koaiJ1z9na

H4illsdale# N. J.

Smitho E. E. E Goodmant L. (1982) Understanding InstructionS8

The role of explanatory material. Soft Beranek and Newman,

Inc*# Technical Report No. 5088, July.

254



0

ABOUT THE AUTHOR

Dr. David Kieras is a Cognitive Psychologist at the
University of Arizona. His research interests include S
reading comprehension, procedural knowledge, human-
computer interaction, and simulation modeling of cognitive
processes. The focus of his current research concerns
representing the same cognitive processes used to acquire
procedural knowledge from written material in the form of
computer simulations. Dr. Kieras received a Ph.D. in - 0
experimental psychology at the University of Michigan in
1974.

255

L _ 0



o

Artificial Intelligence Approaches to Monitoring System Integrity 0

Roy A. Maxion

o Institute of Cognitive Science
University of Colorado
Boulder, Colorado 80309

o ABSTRACT
This paper introduces the concept of artificial

a._ intelligence-based (expert) systems'[6] for enhancing system
availability through system integrity monitoring and system
diagnosis. Such expert systems use knowledge and inference
mechanisms to solve problems which would ordinarily require

S the expertise of the best human practitioners in the field.
We demonstrate-4he seriousness of failure and explain-, why
several traditional methods of ensuring system availability,
reliability, and maintainability fail in certain important
cases, e.g. intermittent failures. An outline of the human
diagnostic problem-solving process is presented with a
computational analog. A symptom-based expert diagnostic
system(*) is introduced with its early and successful
results in fault prediction.

Overview

Never mind if the implications of high-technology complexity haven't
influenced your recent consciousness; they will. With the steady advance
of technology, and the accompanying redoubling of sophistication and
complexity in our electronic world, failures in complex systems are
manifesting themselves in increasingly insidious ways. A high-technology
information industry is evolving in which powerful processing techniques are
now required to support hardware systems. The job market, too, is taking an
increasingly technological orientation requiring workers to have complex
skills and extensive training.

One cogent result of this is the recognition that human diagnosis of complex
systems and their concomitant failures is strongly influenced by equipment
complexity [1, 2). Given a complexity threshold, human diagnostic skills
will soon become ineffectual and the mean time to a diagnostic decision will
increase without bound. Because current methods of design and diagnosis are
being challenged by the spectre of massively automated involution, building
complex systems whose reliability and availability approach 100% will
require further innovations to fault-tolerant computing.

• The implementation described here was done at the Xerox Corporation, Palo

Alto, California.

257



The Problem of Failure

F* How serious is the problem of failure? You probably don't know, because, as
in most installations, you have ceased to view failure as an unusual event.
You refer to failure more in comparative terms than descriptive ones: "The
disk is not as bad as it was last week." We chart our pain from one day to
the next and feel better or worse by comparison, ignoring the presence of
failure when it falls below what we believe is a tolerable level.

The seriousness of computer failure can be equally grave from both fiscal
and social viewpoints, particularly with computers moving out of clean-rooms
and into uncontrolled environments. In many applications -- for example, in
spacecraft, air traffic control, nuclear and process plant control systems,
and hospital patient monitors -- failure can have catastrophic effects.
Even barring catastrophe, severe consequences such as protracted downtime,
wrong results, security breeches, or inadvertant unauthorized accesses to
data and equipment may occur as a result of failure. From the point of view
of the user, computer failure is most often seen as downtime. Downtime can . - .
be broken down into several constituents, the most salient one being spoiled - 0
work time, either in terms of work that cannot be done on a faulty machine
or work that must be repeated due to system failure. To make at least one
of these examples concrete, it is reported that one US airline suffers
revenue losses in excess of $36,000 for every minute that their reservation
system is down [3]. -

.0 "

In addition to user-perceived costs of failure, the vendor also bears a
substantial burden in the field service domain. As the computer industry
moves into an age when customers demand availability and reliability
approaching 100%, manufacturers will be forced to carefully examine the
trade-offs among the several avenues of failure, diagnosis, and recovery
available to them. Service costs for computer systems of all types are
rising at a rate of about 25% per year [4], a rate much greater than that of
hardware costs. As the growing complexity of computer systems outstrips the
troubleshooting abilities of technicians, the problems of computer downtime
and reliability will explode spectacularly. Highly skilled technicians will
be increasingly scarce as the battle for technical manpower heats up. Who
should bear responsibility when computer failure leads to revenue loss,
property damage, or personal injury? There is a host of legal problems to
consider and it is likely that litigation and regulations will be on the
rise as computers and the consequences of their failures proliferate.
Clearly, reliability and maintainability will be the principal issues for
computer systems of the eighties.

Availability, Reliability and Maintainability

Availability, the probability that a system will be able to perform its
mission when required, is a system parameter of paramount importance for
influencing operational readiness. Availability is a function of system

258

i. S



mean time to failure (MTTF) and mean time to repair (MTTR). Reliability is
the probability that a system will perform a required function under
specified conditions for a predetermined period of time. It is the
significant variable influencing MTTF. Once a system has failed, concern
focusses on maintainability and MTTR. Maintainability is the probability
that a failing system will be restored to operational readiness within a
given period of time.

The two general typical approaches to solving reliability problems are often
termed fault avoidance and fault tolerance. The goal of fault avoidance,
reducing the possibility of failure, is most often attained through
cautious, conservative design and the use of high-reliability components.
Nevertheless, even after the greatest of care, faults will still occur and
the result will be system failure and a subsequent need for diagnosis. In
fault tolerant systems the use of redundancy (extra time or extra
components) provides the information required to obviate the effects of
failures. The field of fault-tolerant computing has designed and
implemented a spectrum of clever and sophisticated techniques, most of which
are anticipatory in that a particular (type of) fault must be conceived of
in the designer's mind before any implementation of preventive,
fault-tolerant measures can occur. Siewiorek and Swarz [5] give an
excellent review of such reliability and availability techniques as fault
detection (e.g. duplication and fail- safe logic), masking redundancy (e.g.
error-correcting codes and N-modular redundancy with voting), and dynamic
redundancy (e.g. backup sparing, reconfiguration, and graceful
degradation).

A class of failures particularly resistant to standard fault-tolerant
techniques, known as the so-called "5% problems" because vendor diagnostics
are so unusually ineffective in locating these recalcitrant faults, account
for nearly 40% of all service costs according to an industry rule of thumb.
These problems consist primarily of three failure types: (1) intermittent
failures, transients which exhibit symptoms of failure for only a short time
before returning to normal; (2) device interaction failures in which
devices function well independently, but interactions among multiple devices
create problems; and (3) command sequencing failures in which only a
certain sequence of commands will cause difficulty. A significant factor in
isolating these types of problems is the time spent by technical personnel
in attempting to understand and replicate field failures, especially in the
face of little evidence other than operator description or complaint.

Summarizing, the current state of fault-tolerant computing is good.
Reliability and availability have improved by some hundreds of per cent over
the last decade. Nevertheless, failures will still occur and they will
still have to be dealt with by whatever means are available after
fault-tolerance has done its job. The implication is not a pleasant one.
Ironically, in fact, some fault-tolerant techniques appear to be working
against us. Since techniques in fault-tolerant computing are now quite

259

S

2



advanced and since the integration level of most modern equipment is so
high, the failures that do slip through are more and more likely to be in
the previously mentioned class of 5% problems -- but that percentage will
doubtless rise, since only the truly recalcitrant problems will remain.
Many fault-tolerant methods, though quite effective, have merely worked as
masks or filters, taking care of the "trivial" problems automatically and
leaving the really perverse ones to humans. Due to various limitations of
human cognition, non-experts are poorly equipped to solve these abstruse
problems. As consumer demand for high reliability and high availability
systems mounts, manufacturers will need to be ever more watchful over the
scarce (and expensive) resource of expert diagnosticians. Artificial
intelligence has the potential to address these problems in significant
ways.

Maintainability ir influenced primarily by design and diagnostic factors. A
system that is well designed for testability will provide -- at least --

increased observability and controllability of internal signals, as well as
error reporting and logging facilities. These design factors, among others,
provide crucial information for the diagnostic process, irrespective of
whether the diagnosis is being performed by human or machine. In the final
analysis, machines will sometimes fail no matter how carefully designed or
constructed they may be. At that point the quality of the diagnostic
process and its concomitant tools is the principal determinant for restoring
operational readiness.

Diagnosis

Since diagnosis portends to be a central issue in this exposition of how
special techniques can positively influence the availability equation, let
us briefly explore its implications. "Diagnose" is a word that comes from
the Greek, meaning to identify a condition by its signs, symptoms, or
distinguishing characteristics. The general problem of diagnostic systems
is to discriminate among the possible states of the object under scrutiny,
and to determine which one actually exists.

For either human or machine, that constitutes a problem-solving task of
considerable magnitude. Humans have a number of important limitations in
inferring the process that generated a particular set of results, i.e.,
diagnosis. Machines, in their current approaches, are almost hopelessly
inadequate. Typical computer diagnostic programs suffer from
incompleteness, complexity, poor fault models, combinatorial explosion due
to circuit fanout, limited test sets, compute time, and the plethora of
usual errors introduced by human programmers. Consequently, until
methodologies improve, humans are needed as an interpretive and
problem-solving link in the diagnostic process.

Humans, however, are subject to some serious limitations of their own. Many
of these may be overcome by use of machine aids, taking advantage of the

260

t1



best that machines and humans each can offer. Consider first that
diagnosis, as a problem-solving task, has an a priori requirement for a
nontrivial collection of cognitive skills. While general cognitive
abilities are not of major impact in solving simple problems, they gain in
import as problem complexity increases. Perceptual and spatial abilities
have been shown to be strong determinants in problem-solving behavior [25]. -

Cognitive style is another significant factor [26]. Reflective,
field-independent persons tend tokbetter problem-solvers than impulsive,
field-dependents. Another important factor is human short term memory span,
which has been linked to one's ability to successfully recall and execute
problem-solving strategies requiring conservation and transitivity [27].
Ideational fluency, the ability to generate a large number of ideas or
hypotheses in response to a particular problem situation, is an important
part of creative problem-solving [29]. A diagnostician must be able to
generate and explore multiple explanations about the causes of an event, and
be able to predict the implications of events.

Good problem-solvers are also affected by various personal and affective ...
characteristics. For example, they constantly deal with situations 0
involving missing information where frequent strategy shifts are needed in
the face of changing data. This requires a high tolerance for ambiguity.
Finally, good problem-solvers have a high self-concept of ability [28], a
high achievement motivation, and less fear of failure than their
counterparts.

If all that weren't enough to seriously reduce available technical talent or
attempt to embody in a machine model of diagnostic reasoning, there are
additional factors which specifically affect diagnostic problem-solving
[24]. The net effect of evidence, for example, can be different depending
on how it is perceived; an object or situation is judged to be more or less
salient as the surrounding circumstances change. This means that the - .
significance of failure symptoms may go unnoticed under certain conditions,
but not others. Focus effects, such as how a question is posed, are
influential, too. Consider the question "how is a tree like a man?" as
opposed to the question "how is a man like a tree?" When evidence is
distributed into several categories it can become diffuse, its effectiveness
being distorted, even though probabilistically its meaning remains - 0
unchanged; humans often misinterpret diffuse data. In the face of missing
information, people will seize on almost any cue -- often a negative one --

in an effort to explicate what is probabilistically untenable. Anchoring
and adjustment strategies [23] demonstrate that people anchor on what is
perceived to be favorable evidence for a particular situation, then adjust
their judgements according to the total evidence available. Such a strategy - -

can depend on whether one is evaluating a hypothesis or its complement, on
the number and specificity of alternative hypotheses, and on perceptions of
missing evidence. Diagnosis is also sensitive to temporal relations which
can be very complex, but not necessarily indicative of causality. Finally,
attention is a factor in diagnosis, since diagnosis itself shifts attention

261



to new evidence, thereby directing the search for information and causality.

As can be quite easily discerned from this short discussion, diagnosis is a
complex phenomenon which, at least in the near future, may well defy our
best attempts at description, let alone machine modeling or simulation. It
is good to get a perspective on the difficulty of the problem facing us
before we launch headlong into a program of possibly endless frustration in
attempting to solve all the problems of diagnosis, whatever the methodology.
Now we are left in the awkward situation of having a few humans with
relatively good -- but little understood -- diagnostic skills; and
relatively bad -- but well understood -- machine implementations of
diagnosis. Though a long and deep research program would doubtless produce
many interesting results (and should indeed be carried out), there are some
things which can be done now to improve the plight of diagnosis and make
headway against the problems of failure. Prominent among these are various
applications of artificial intelligence methodologies, notably expert
systems and human-machine cooperative systems, which can help overcome many
of the human limitations in diagnosis. The remainder of this paper will
focus on suggested applications of artificial intelligence technology and
the results of an experiment utilizing one of the new approaches.

Expert Systems

The primary objective of fault-tolerant computing is to minimize the average
cost of a fault in terms of time and equipment by achieving some explicitly
stated goal or intent in the face of an unanticipated, but well understood
failure. Similarly, the field of artificial intelligence (AI) is directly
concerned with the problem of expressing and automatically converting
possibly ill-specified intent into effective action. Problem-solving
methods exist for choosing and specifying an intended action from within a
hierarchy of levels, moving from highly abstract assertions to detailed
machine instructions. When an unanticipated problem arises at one level in
the hierarchy, the possibility exists for "understanding" what was actually
intended at some high level, and finding a new, lower-level means for
achieving correct action. Many artificial intelligence domains assume
uncertain and incomplete knowledge of the environment, using what IS known
to infer a more completely specified situation. Though this would
constitute an extremely ambitious endeavor, suggestions have indeed been
made wherein that kind of Al system architecture could be utilized.
Ideally, some sort of "fool-tolerance" [7] should extend into all phases of
system operation as suggested by AI opportunities at the human interface in
Figure 1 [8].

262



Blunder Protection
Opror

Reliability Status

tr y - Validation

Working

Rets ----------
Plausibility

SystemI egner ....
De e -- Advice/Goals

Experiments

E atenance_
Explanations

Figure 1. Al Opportunities at the Human Interface

This paper will concentrate on a few conceptually simple tools that would
significantly impact the maintenance function. The ultimate goal of these
tools is to provide a level of performance for troubleshooting (and
monitoring) that is comparable to that of an experienced engineer. We would
like to take advantage of the heuristics that experts utilize in the tasks
of fault detection and diagnosis, discerning multiple fault conditions,
distinguishing among transient, intermittent, and permanent faults, and
taking appropriate action for system recovery, even if in a degraded mode.
An expert diagnostic system so composed could function both as a
technician's assistant and as an on-line monitor. With the use of expert
systems -- software systems that encapsulate the skill and reasoning power
of human experts -- substantial reductions in downtime, maintenance time,
and costs can be realized by automating the diagnostic process. In some
cases faults can be predicted!

An expert system uses artificial intelligence techniques to make inferences

263



based on domain-specific knowledge supplied by experts. In typical expert .

systems the expertise that the system brings to bear on a problem is
represented as a large collection of rules (hence the often-used moniker,
rule-based system) usually based on empirical associations. One example of
such a rule might be "IF the display flickers, THEN examine the power
supply." Domain experts, such as senior technicians, may be consulted about
problems known to occur in a computer system; their solutions and knowledge 0
are codified into a set of condition-action rules which subsequently drives
a program for inferential reasoning about the specified domain.
Paraphrasing [9), the individual rules are usually specified as IF-THEN
statements, each rule representing some small portion of the problem-solving
or decision process. Each rule specifies a conclusion that follows from a -

given set of premises. The rules are usually in the form: if <condition> S

then <action>, with the conditions composed of conjunctions or disjunctions
of terms. These premises either refer to facts given to the system or to
the conclusions of previous rules using such facts. The conclusion of one
rule could be used as a premise for other rules. In such a manner the
simple rules comprising the program can be chained together to describe
complex decision processes. Thus a rule-based system can be S
"data-directed," meaning that the flow of control is determined by the data
rather than by rigidly fixed statements of program code.

Rule-based expert systems have several important properties that make them
suitable for certain classes of application. They can focus on and handle
significant amounts of detail, and their continual re-evaluation of the S
control state lends an environmental sensitivity unmatched in canonical
procedural approaches. They are well-suited to real-world,
multi-dimensional environments whose events and actions are richly
interconnected. The rule vs data organization of the system allows the
separation of data examination from action or data modification. Rule
systems are highly modular and allow easy addition of new information, hence
easing the chore of knowledge acquisition. A complete treatment of
rule-based systems is in [10, 12].

The extent of activity in AI applications is considerable and increasing
rapidly in the US and in Europe. Al applications have penetrated medical
practice, chemical and biological research, and a number of scientific _
domains. These include analytical chemistry [13], protein x-ray
crystallography [14], molecular genetics [15], mathematics [16], geological
exploration [17], and automatic configuration of computer systems and their
peripheral components [19).

Expert systems lend themselves to several generic tasks that experts -

commonly perform. Each of the tasks listed below [from 11] are part and
parcel of the job of an intelligent monitor for complex systems whose task
it is to monitor real-time data, interpret it, and prescribe correct
responses accordingly. Notice that in real-world environments, not only are
these tasks ubiquitous, but all of them can be construed as diagnosis.

264

Al



Hence the importance of understanding this diagnostic phenomenon. .

Interpretation: The analysis of data to determine its
meaning.

Diagnosis: The process of distinguishing or identifying a
(fault) condition based on an examination of symptoms.

Monitoring: The continuous interpretation of signal data to
recognize predetermined signatures and events or to
synthesize them based on the data stream.

Planning: creating programs of action to be carried out
toward the achievement of various goals

Prediction: forecasting future events based on reasoning
about time, time-ordered data, and models of cause-effect
relations among data.

A conception of an expert system that acts as a diagnostic monitor of a
computer hardware system must, in some sense, perform in all the roles just
mentioned. The work described here has been more grounded in *the
non-planning tasks, since they are more tractable for initial
implementation. In particular, monitoring is regarded to be the most
important part of complex system diagnosis because the signals received by
the monitor demon provide the lion's share of clues for subsequent
problem-solving. Before describing the architecture of the system, let us
examine some typical domain-specific behaviors of human diagnostic
problem-solving. This is entirely reasonable to do, since it is essentially
a computational model of human expertise that we are eventually attempting
to construct.

Expert Diagnosticians

An expert diagnostician must have an expert-level background in hardware
system diagnosis and should be equally versatile at conversing with human
agents as with the target system. He should be able to interpret the
available data and provide a summary of system status. He should be able to
recognize unusual events and make suggestions for corrective action, if
necessary. He should be able to give advice on adjusting various system .
parameters based on system status and diagnostic or monitoring goals. He
should be able to detect possible measurement errors and maintain a set of
expectations and goals for future evaluation while being able to shift focus
based on newly received data.

Observation of diagnostic problem solvers in action [20, 21] reveals that

265

IL



diagnostic judgement is based on gross chunks of conceptual knowledge as
opposed to detailed knowledge of the domain architecture. This knowledge
appears to procedurally organized as if-then rules which allow rapid focus
of attention on relatively few diagnoses, and the avoidance of large
searches. It contains associated levels of uncertainty and is retrieved
with great facility, usually in response to an external confusion or
misconception. Most diagnosticians first generate a list of potential
(possibly competing) hypotheses and then choose from this list by
considering the most common diagnoses first. The second step is to gather
problem-relevant data and form a (reasoned) plan for hypothesis testing.
The observed behavior is then explained within the context of available data
and finally an experiment is conducted to confirm or deny the present
hypothesis or to distinguish among competing hypotheses. It should be clear

E'-Sthdiagnostic prolem-soles bri n grossthunksmo canont kogea,

.. No up iset d il, o dgoi sythedmai architecture .flosthis rnwege

". of arly io c osely atoniel Fue digoead2h.viace o ag

Knowledge Kernel

with great facilityusua ormain Gtespnsetg n etralcnuino

(possibly co xpetin athyothse and thesGncherati omhs it b

S" considerig the mo xperomnttiagnsesdfirstihn ecngte stogte

Feedback to Kernel and Information Gathering

Fig 2. Diagnosis Cycle a

266

. doainnonpecfic robem-olvng nowldge ths i knon a th kenel



Diagnostic Approaches

In general there are two major approaches to system diagnosis, both of which
can effectively exploit artificial intelligence techniques. They are called
specification-based and symptom-based diagnosis. In a specification-based
approach [22] system design specifications are used to predict the types of 0
faulty behavior that might occur in the system. Diagnostic tools are then
developed, based on this behavior.

A variation of the specification-based technique is sometimes called
discrepancy detection [23]. This method looks for mismatches between the
values expected for a given operation and the values actually detected. S
This has the advantage that faulty behavior can be defined as any behavior
that is incorrect, as opposed to focusing only on stuck-at logic lines.

The specification-based methods avoid many of the drawbacks of traditional
diagnosis such as being bound by large fault trees and fault dictionaries or
being focused exclusively on stuck-at-one or stuck-at-zero types of faults. S
However, both variations mentioned here are noticeably poor at resolving
intermittent failures.

The symptom-based approach, also distinct from traditional simulation and
fault insertion, employs tactics for capturing the times and locations of
observed errors. It contrasts normal system behavior (which can be
characterized automatically) with error behavior, usually by discovering or
analyzing trends in data. This method is based on the observation that
modules typically exhibit periods of sporadic unreliability before final
failure. Observation and detection of these trends makes it possible to
predict certain hard failures prior to catastrophe. (For predicted
failures, preventive maintenance can be performed or spare parts can be
ordered in advance.) It has an important advantage that the other approaches
do not: the ability to discover and locate intermittent failures.
Intermittents are the poorest understood, most troublesome types of
failures, because they do not stand still for the scrutiny of the
traditional diagnostician. Additionally, intermittents frequently result
from system interactions that are too complicated to discover in . S
specification-based approaches. The symptom-based methods are the ones with
which we are presently experimenting; the following discussion is based
partly on our experiences.

Symptom-based diagnosis is always founded on some sort of monitoring. Two
useful methods are real-time monitoring and retrospective analysis. The
present approach uses both. The outputs of simple, feature-focused devices,
unobtrusively implanted in the system, are monitored. The temporal
resolution and the parametric granularity are dynamically varied by an
intelligent analysis system. In our distributed environment a single
machine, called a diagnostic server, is responsible for monitoring (and
controlling) all systems on a network, including itself. If this server

267

-9



goes down there is a mechanism for automatically starting some other machine
on the network to take over its function. The only distinction among
machines is in the software; only one machine at a time runs the special
monitor and control software. Collecting and amalgamating the outputs of
these monitors (e.g. for disk controllers or network traffic) yields what
is viewed as a syndrome or signature. These signatures form the bases for
automatically characterizing the normal behavior of the entire system, as
well as its individual cotiponents, and for detecting deviations from
normalcy.

Notice that these concepts embody the usual view of a pattern classification
paradigm. From this perspective the monitors are feature extractors and
their amalgamated outputs constitute a feature vector. The range of
outcomes for each monitor defines a feature space. Classes of failure
phenomena can produce signatures associated with clusters in the feature
space. When monitored system characteristics deviate from normalcy, the
signature is checked against a feature cluster and an appropriate recovery
scheme is invoked.

Recovery can be interpreted in many ways. If the failure is intermittent
and potentially serious, the failing part of the system can be dynamically
taken off line or an operator/user can be notified. A less radical approach
would be to first confirm the observed effects by automatically selecting or
constructing a test program, based on signatures and knowledge-based
information, and administering the test to confirm or deny specific
hypotheses about the failure. When the test results are analyzed, a more
intelligent decision can be made by the system as to the direction in which
diagnosis should proceed, or which type of recovery should be invoked.
(Naturally, implementors must exercise care in selecting automated recovery
procedures.)

A symptom-based diagnostic approach is heavily dependent on a constant flow
of information. One rich source of information relevant to diagnostic
problem-solving can be provided through error logging and status reporting.
When a diagnostic program cannot recreate an error event it is often because
diagnostics do not stress the system in the same way that the operational
program does. Error logging can capture information about the state of the
system at the moment of error, thus providing clues to the source of the
error. Error logging can also provide the data which makes automatic trend
analysis possible. A program can periodically scan the error log looking
for patterns. This kind of analysis can be further enhanced if the analysis
program can make requests for certain tests to be run either concurrent with
normal execution or stand-alone. Trend analysis can be used in all systems,
even those with little error detection logic. The establishment of a trend
or a systematic occurrence can be of tremendous value in reducing the time
spent on system diagnosis.

Any of these approaches to system integrity and availability using

268



techniques of automated diagnosis and monitoring requires a sophisticated
arrangement for information gathering and feedback. The intelligent monitor
needs to gather and assess specific information from (possibly) remote sites
at varying degrees of resolution, both in terms of the number of measured
parameters and in terms of temporal granularity (to avoid information
overload). Hence comes a requirement for automatic abstraction techniques
for data reduction. There is also a requirement for the ability to control
certain aspects of the remote systems, such as the execution of tests and
the return of their results, including the identification of these results
as distinct from the data of normal operations.

Implementation, Status, and Results 0

Such a system is now partially implemented as part of a phased design of a
collection of individual tools that run in a mutually cooperative mode. The
system has been run for eight months on a network of over two hundred
computers. The symptom-based monitoring strategy is working well. Even in
its current, unrefined state, it has enabled the prediction of several
system failures. (Lead time of one week to one day; accurate to one day.)
It has been used to collect data for the assurance of a new architecture and
it has unexpectedly discovered intersystem clock discrepancies. Experiments
are in progress for real-time monitoring of various parameters of network
traffic as viewed by individual machines, as opposed to network-wide
measurement.

The system operates both in real-time and retrospective modes, the latter
involving a posteriori analyses of detailed log data. For the convenience
of technicians and observers, a dynamic graphic display can show relations
among selected monitor results. Dynamically variable information gathering
and feedback is functioning and measurable parameters can be dynamically
selected at arbitrary resolutions. Test programs can be sent to remote
systems via the local area network and, remotely, can be automatically

* loaded and run with the results being delivered back to the controller. It
is anticipated that in the future the system's knowledge base will be
automatically updated with the results and rules induced from monitored
behavior.

Conclusion

This paper has described the general and ubiquitous environment of
diagnosis, and has sketched several issues in diagnostic reasoning due to _
human cognitive limitations. It was shown that understanding and modeling
the diagnostic process will be difficult, but not impossible. A description
of a partially implemented diagnostic architecture was given. This
implementation has produced significant results in diagnosis and fault
prediction, as well as being an excellent vehicle for suggesting new
directions for investigation. Work is in progress in constructing a
real-time, dynamic, computer-based laboratory for studying the diagnostic ...

269

0



behavior of humans and of model systems, including aspects of rule -

acquisition.

Techniques from artificial intelligence, applied to the diagnosis of general
complex systems (not just computers), can significantly ameliorate the
problems associated with increasing complexity and decreasing availability. S
It is probable that no single method presented here will solve a majority of
the problems of system diagnosis; rather, a meld of these techniques will
most likely be evolved as each technique becomes better understood in its
own right.

The approaches outlined here will be best utilized in conjunction with the S
advanced understanding of such concomitant issues as mAn-machine
interactions, user models, limitations on human cognition, and exploitation
of certain especially human capabilities like pattern recognition and
pattern discovery. The methodologies presented here are not panaceas; nor
are they particularly inexpensive. However, they are being developed and
used in several laboratories and have already proven effective in the .
detection, diagnosis, and prediction of system failure.

270

-g



References

Rouse, W. B. [1978]
Human Problem-Solving Performance in a Fault Diagnosis Task
IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-8, No. 4,
258-271.
[2]
Wohl, J. G. [1982]
Maintainability Prediction Revisited: Diagnostic Behavior, Systems
Complexity,
and Repair Time
IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-12, No. 3.
[3]
Hightower, Kenneth [1982]
Experience With UAL's Apollo System
Lake Arrowhead Workshop on Practical Approaches to High Availability of
Computer Systems
Lake Arrowhead, California: September 1982.
[4]
Computer/Electronic Service News [1982]
September/October 1982.
[5]
Siewiorek, Daniel P. and Robert S. Swarz [1982]
The Theory and Practice of Reliable System Design
Digital Press: Bedford, Massachusetts.
[6]
Feigenbaum, E. A. [1977]
The Art of Artificial Intelligence: Themes and Case Studies of Knowledge
Engineering
IJCAI-5, 1014-1029.
[7]

* Goldberg, Jack [1975]
New Problems in Fault-Tolerant Computing
An Int. Digest, 5th IEEE FTCS, Computer Society, Paris, France.
[8]
Goldberg, Jack [1983]
Interface Between Conventional Fault-Tolerance and Expert System Techniques
IEEE Workshop: Applications of Artificial Intelligence to Fault-Diagnosis

* and Fault-Tolerance
San Juan, Puerto Rico: January 12-14.
[9•

., Waterman, D. R. and F. Hayes-Roth [1978]
An Overview of Pattern-Directed Inference Systems
In Pattern-Directed Inference Systems
Academic Press: New York.

271



[10] .
Davis, R. and J. King
An Overview of Production Systems
In E. W. Elcock and D. Michie (eds.)
Machine Intelligence 8

Stefik, Monk, et al. [1982]
The Organization of Expert Systems; A Prescriptive Tutorial
Xerox Palo Alto Research Center Technical Report VLSI-82-1
Palo Alto, California.
[12]
Waterman, D. R. and F. Hayes-Roth [1978] 0
Pattern-Directed Inference Systems
Academic Press: New York.
[13]
Buchanan, R. G. and Feigenbaum, E. A. [1978]
DENDRAL and Meta-DENDRAL: Their Applications Dimension
Artificial Intelligence, Vol. 11, 5-24. -
[14]
Engelmore, R. S. and H. P. Nii [1977]
A Knowledge-Based System for Interpretation of Protein X-Ray
Crystallographic Data
Stanford Computer Science Department Technical Report HPP-77-2.
[15]
Stefik, M. [1978]
Inferring DNA Structures from Segmentation Data
Artificial Intelligence, Vol. 11, 85-114.
[16]
Lenat, D. B. 11977]
The Ubiquity of Discovery
Artificial Intelligence, Vol. 9, 257-286.
[17)
Duda, R. 0., et al. [1978]
Development of the Prospector Consultation System for Mineral Exploration
SRI International: Final Report Projects 5821 and 6415.
[18)
Simon, H. A. and G. Lea [1974]
Problem-Solving and Rule Induction: A Unified View
In L. Gregg (Ed) Knowledge and Cognition
Lawrence Erlbaum: Hillsdale, New Jersey.
[19]
McDermott, J. [1980]
RI: A Rule-Based Configurer of Computer Systems
Carnegie-Mellon University Technical Report CMU-CS-80-119.
[20]
Maxion, Roy A. [1982]
Unpublished paper.
Xerox Corporation and University of Colorado.

272

0.



.i .: .-:  .- .. .....

[21]
Gorry, G. A. [1973]
Computer-Assisted Clinical Decision-Making
Methods Information in Medicine, Vol. 12, 45-51.
[22]
Davis, R. et al [1982]
Diagnosis Based on Description of Structure and Function
Proceedings of the National Conference on Artificial Intelligence
Pittsburgh, Pennsylvania.
[23]
Genesereth, M. [1982)
Diagnosis Using Hierarchical Design Models
Proceedings of the National Conference on Artificial Intelligence
Pittsburgh, Pennsylvania.
[23]
Kahneman, Daniel, Paul Slovic, and Amos Tversky (Eds.) [1982]
Judgement Under Uncertainty: Heuristics and Biases
Cambridge University Press: Cambridge.
[24] . -.

Einhorn, Hillel J. and Robin M. Hogarth [1983)
A Theory of Diagnostic Inference: Judging Causality
Center for Decision Research, Technical Report
Graduate School of Business
University of Chicago: Chicago, Illinois.
[25)
Witkin, H. A., D. R. Goodenough, and P. K. Oltman [1977)
Psychological Differentiation: Current Status
Educational Testing Service Research Bulletin RB-77-17 .-
Princeton, New Jersey. -jt
[26]
Rouse, William B. [1982]
Cognitive Style as a Correlate of Human Problem-Solving Performance in Fault
Diagnosis Tasks
IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-12, No. 5,
649-652.
[27]
Case, R. [1978]
A Developmentally Based Theory and Technology of Instruction
Review of Educational Research 48, 3, 439-463.
[28]
Bloom, B. S. [1976)
Human characteristics and School learning
McGraw-Hill: New York.
[29)
Torrance, E. P. [1967]
Scientific Views of Creativity and Factors Affecting its Growth
In J. Kagan (Ed.)
Psychology in the Making: Histories of Selected Research Problems
Alfred A. Knopf: New York.

273



AFHRL Program for Artificial Intelligence Applications
to Maintenance and Training

Brian Dallman "
Air Force Human Resources Laboratory

0 The young science of artificial intelligence has not yet produced a
technology that can be used to solve real world problems in a consistent manner;

Om however, within the next 10 years it is expected that practical application of
some forms may be commonplace. The time is ripe for military laboratories to
start stimulating and guiding research in the development of systems which would
extend the capabilities of the military forces. AFHRL is initiating a program to
participate in the development of Al technology as it applies to maintenance
aiding and training. Measurable outcomes could include lower mean time to
repair, a greater operational readiness, and a stabilized corporate experience base 6
resistant to personnel attrition. Other benefits could include enhanced personnel
productivity, greater training efficiency, and decreased task loading on weapon
systems personnel.

This program has three principal goals. First, the program will apply Al -.

technology to real Air Force problems in the maintenance aiding and training S
domains through an integrated system. The rationale for this integrated system
has been documented by Richardson (1983). The principal initial demonstrations
will be conducted as a part of AFHRL's Integrated Maintenance Information
System (IMIS) program (Johnson, 1982). '-The second goal is to establish a
capability for the conduct and examination of artificial intelligence research. Al -
is a multidisciplinary field with the principal contributions being made by - 0
cognitive psychologists and computer scientists. Because of the scarcity of
experts, it will be necessary to educate Air Force personnel about Al and
maximize the sharing of resources and information. This can be accomplished
through jointly funded research activities and participation with Al researchers as
in the case of the Intelligent Computer-Assisted Instruction Network.' The third
goal will be to assist/consult with other Air Force organizations in the
development and exploitation of the evolving AI technology. ,- As the technology
becomes more refined and personalized, it will also become iilore distributed.
There will be a need for contacts for information and assistance.

This program is jointly sponsored by the Logistics and Human Factors
Division and the Training Systems Division of AFHRL. As currently envisioned,
the core applications efforts will be to build and demonstrate Intelligent
Maintenance Aiding and Training software systems for IMIS. Supporting these
core efforts will be basic research and technology development studies.

The IMIS proposal is to provide all necessary automation to flight line
personnel in one compact, user-friendly device. It would have common data - o
bases, user interfaces, reporting requirements, displays, hardware, etc. It is
envisioned to be capable of aiding, training, and supporting personnel. It would
display procedural data, aid in troubleshooting, present training material tailored
to the specific person and task requirements, as well as aid in personnel decisions.

275



It will eventually be capable of changing its internal knowledge representation
based on an analysis of its data bases. IMIS will achieve this end state through an
evolution that is contingent on advances in Al technology. Research is required in
areas such as expert diagnostic systems,* knowledge representation, information
extraction, intelligent computer-assisted instruction, and machine learning.

The three elements of the core program are to (1) perform an extensive
planning, coordination, and experience acquisition activity, (2) develop an
intelligent test bed, and (3) design and develop the prototype IMIS A applications.
Other demonstrations outside of IMIS are being considered. These include small
portable ICAI systems and intelligent instructional design, development, and
evaluation tools.

The basic research and technology development efforts will facilitate
the development of the intended applications and assist personnel in maintaining
currency with other related research programs. In the basic research areas, we
envision performing supporting studies in natural language interfaces, cognitive
modeling of learning and memory functions, and developing models of human
diagnostic processes. The technology development efforts will be oriented toward
the application of the results of basic research studies that have promising
outcomes.

Figure 1 provides an initial pictorial description of the program
architecture. Following this are brief descriptions of proposed efforts.

REFERENCES

Johnson, R. C. Integrated Maintenance Information System: An imaginary
preview (AFHRL-TP-81-18). Wright-Patterson AFB, OH: Air Force Human
Resources Laboratory, Logistics and Technical Training Division, September
1981.

Richardson, 3. 3. Artificial intelligence: An analysis of potential applications to
training, performance measurement, and job performance aiding (AFHRL-TP-
83-28). Lowry Air Force Base, CO: Air Force Human Resources Laboratory,
Training Systems Division, September 1983.

276

.- S



U.,

-j

OD 0i

2c~ OD w >.
rm J

a II c

C>
w ~ ijw

__ _ __ _Iw ~
U) ~iUI

ID OI III~ c

mi I: Li -j Ici _______!I--
4D -c co u W co

w-j~c& >

W277



Artificial Intelligence Applications for Ada

PROBLEM: S

Since Ada recently became the DoD standard computer language, ideally
it should be used for all programming applications within DoD. However, there
are some applications for which Ada is not currently practical. One of these
areas is artificial intelligence. In DoD, the majority of programming for Al
applications is done in LISP. Consequently, if LISP remains the primary Al ,
language, then Ada's usage and acceptance in a critical new area of software
engineering will be severely limited and DoD's effort to establish a common high
order language will be hampered.

OBJECTIVE:

To develop an extension of the Ada language which will provide the
capabilities for Al programming applications. This extension can involve possibly
only an Ada package or collection of packages.

APPROACH:

This project involves three distinct tasks. The first task is to identify
the capabilities a language must provide to meet AI programming needs. This
needs assessment will be accomplished by studying the capabilities provided by -

existing Al programming languages such as LISP or PROLOG. Al researchers will .. .
also be queried for their input on necessary capabilities for AI that have not been
sufficiently provided by the existing Al languages.

Once a list of requirements has been developed, Ada will be evaluated to
determine if it is capable of meeting those requirements. If Ada simply cannot
meet the needs of Al programming, then the project is over. But if Ada can in
fact meet some of the Al needs, then work will continue to design and develop a
super-set of Ada which provides Al programming capabilities.

PRODUCTS: .

• Survey of Requirements of Programming Language

* Evaluation of Ada Respecting AI Programming Language
Requirements

* Possible Super-set of Ada Providing Al Programming
C-pabilities

278

I_ "



AFHRL Plan for the Application of Intelligent Systems Technology

PROBLEM:

The application of artificial intelligence (Al) techniques to maintenance
and training is a high-risk activity in part because of the scarcity of scientific
personnel who are experienced in the field. By adequately planning efforts and
coordinating activities, these risks can be reduced.

OBJECTIVES:

1. Acquire hands-on experience with Al-based systems for
maintenance diagnostics and training. ,

2. Develop a detailed, prioritized research and development
plan for the near-term initiatives.

3. Develop a general planning document for establishing an
artificial intelligence technology base. 0

APPROACH:

Acquiring hands-on experience with expert systems technology designed
for maintenance diagnostics will involve the implementation of an experimental
system on the AFHRL/ID VAX 11/780. Issues associated with the use of expert
systems technology for maintenance aiding and training roles within the Air Force
will be identified and explored. Coordination activities have included a joint-
services workshop on Al applications to maintenance aiding and training. The
technical papers and the exchange of information will be used to develop the
detailed research plan and the functional description for the next program effort--
an intelligent test bed system.

PRODUCTS:

* Proceedings of Workshop on Al in Maintenance .

* Research Development and Application Plan

* Functional Specification for Demonstration System

279

t.



Artificial Intelligence Basic Research Studies

PROBLEM:

Basic research issues that are likely to emerge in the application of
artificial intelligence principles will need to be studied. Problem solving
strategies that can be adapted in artificial intelligence software must be
designed. Knowledge representation techniques will have to be developed. 0
Designing expert systems software needs to be done. A study that clearly
describes computational linguistic patterns would break down the research task
considerably.

OBJECTIVES: -

1. To investigate and clarify basic knowledge
representation, heuristic generating, and expert systems
software techniques.

2. To better define the structures, meanings, and situations
that form natural language environments in training and
job aiding settings.

APPROACH: --

Target four in-house or contract studies that emerge as a result of the
findings at the end of the planning stage. Issues that may be particularly relevant
will be in the areas of expert knowledge representation, heuristic techniques, and
natural language processing.

PRODUCTS:

* Four technical papers on such topics as Knowledge
Representation, Open-Ended Heuristic Software,
Comparison of Expert Systems, and Al Linguistics

280



Intelligent Test Bed for Maintenance Aiding, Training, and
Organizational Support

PROBLEM:

Little research has investigated the integration of different intelligent
computer systems (i.e., expert diagnostic systems and intelligent CAI).
Determining both the practicality and the necessary resources for Al applications _
is an important need in the development of an integrated maintenance aiding, 6
training, and organizational support system.

OBJECTIVES:

1. To assess the feasibility of developing an integrated S
system and determining research requirements for the
prototype IMIS demonstration.

2. To determine cost and time requirements for the
development of the prototype system.

3. To build a test bed for resolving some issues before the
prototype design planning.

APPROACH: -

The integrated system will be built using state-of-the-art intelligent
computer-assisted instruction and expert systems technology. The concept is to
have the components of the integrated system share the knowledge representation
of the target weapons subsystem. This sharing is a principal concern for the
successful cost effective application of intelligent systems technology. Other key
issues are the user interface design for the system, low cost knowledge -.0
representation and acquisition methods, effective development methods, effective
development tools, and the impact of intelligent systems on job roles and training
requirements.

PRODUCTS: 0

* Intelligent Test Bed System for Research Activities

* Functional Specification for Prototype IMIS System Al
Demonstration

281

!__6



AD-R145 349 ARTIFICIAL INTELLIGENCE IN MAINTENANCE: PROCEEDINGS OF 4/6
THE JOINT SERVICES.,(U) DENVER RESERRCH INST CO JUN 84
AFHRL-TR-84-25 F33615-82-C-083

UNCLRSSIFIED FG 6/4 NL

mlmmmmll

llIllllhhlllll
Slllflfllflfllll

EE~lllllllIE~lE



-I .2

- al 136 I 0

1-125 1.4 .6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAUJ OF STANDARDS- 1963-A



Artificial Intelligence Technology Development Studies

PROBLEM: 0

Many of the techniques for acquiring and representing knowledge in Al
systems need refining. The cost to create and maintain the knowledge domain of a
system could be reduced if machine learning models could be applied.

OBJECTIVE:

The objective of this effort is to refine knowledge representation and
control techniques, knowledge acquisition procedures, and explore the application
of machine learning systems.

APPROACH:

Likely candidate approaches for further development will be identified.
Focus will be on causal models, flexible problem solving strategy, temporal .
contiguity, large knowledge base maintenance, and computer-aided -
design/computer-aided manufacturing CAD/CAM interfaces. Small projects will
be funded, each addressing one of these areas.

PRODUCTS:

* Refined Software Techniques/Strategies

282



Prototype Intelligent Maintenance Aiding, Training, and Organizational
Support Capabilities for IMIS

OPPORTUNITY:

Intelligent systems technology enables machines to perform complex
tasks such as diagnostic troubleshooting that normally are considered to require
intelligence. Intelligent computer-assisted instruction (ICAD provides highly
tailored human tutor-like instructional experiences for students. By integrating
diagnostic troubleshooting and ICAI capabilities into IMIS, a sophisticated system
for Air Force maintenance aiding, training, and organizational support can be
built to increase measurably operational readiness.

OBJECTIVE:

To build a prototype maintenance aiding, training, and organizational
support function for IMIS based upon artificial intelligence techniques.
Functionally, support functions will assist maintenance technicians of varying
abilities in troubleshooting complex subsystems of a weapons system, provide task
relevant training, assist in making personnel action recommendations, and
performing trend analysis on weapons system performance.

APPROACH:

Phase I will consist of a systems definition study based on the results of
early demonstration efforts and current research/application of Al.

Phase II initial efforts will focus upon the creation of generic tools to
enable the IMIS Al applications to be built for the selected weapons system.
Where possible, existing toc3o developed as part of related efforts will be adapted.
A likely target system for the prototype IMIS may be an avionics system of the
proposed Advance Tactical Fighter. A maintenance information system interface
will be used to extract subsystem data, synthesize findings, and update the IMIS
knowledge representation.

Phase III will perform the implementation, operation, test and evaluation .
-for the IMIS at an operational site.

PRODUCTS:

* IMIS Sof tare and Hardware Specifications

* Generic Building Tools

* Prototype Applications

283



the appropriate inference mechanism. Production systems are simply collections
of IF-THEN rules. Goal-directed backward chaining is the same process you use
when you decide to get 40 dollars out of the bank because you are going to dinner.
Other forms of knowledge representation and other inference mechanisms are
available, but these have so far proved to be most useful.

Combining EMYCIN with new knowledge domains has yielded useful
expert systems for pulmonary diseases (PUFF), blood clot diseases (CLOT),
structural analysis (SACON), filling in and debugging these expert systems
(TEIRESIAS), and explaining and tutoring these systems (GUIDON).

GUIDON (Clancey, 1981) is of special interest to us as this expert system
is for instruction and training. In a project funded by ARI, Clancey at Stanford's
Heuristic Programming Project has converted MYCIN into NEOMYCIN.
NEOMYCIN reconfigured the rules in MYCIN so that they became more
psychologically plausible as the basis for reasoning diagnostically. This allows
GUIDON to provide test cases to students, allow them to analyze NEOMYCIN's
diagnoses, and by interpreting the students' analyses, build up student models of
their knowledge base and diagnostic reasoning abilities. Obviously, GUIDON
represents a very large step forward in individualizing instruction and getting the
computer to become a tutor.

A discussion of intelligent computer-aided instruction (ICAD and tutorial . !
systems would be utterly inadequate without mention of the dramatic and
pioneering work of John Brown and his colleagues at Xerox PARC. In a now
lengthy series of impressive tours de forces, Brown (1983) and company have
provided imaginative demonstrations of how to change our mind set about
computers in instruction. His fundamental thesis is that these sophisticated
symbolic environments provided in personal LISP stations or Smalltalk
environments can expand the use and effectiveness of learning-by-doing through
discovery and apprenticeship.

Learning-by-doing environments can provide a tremendous opportunity
for students to learn about themselves and their own thinking processes
(metacognition) and their learning strategies. As an example, Brown and Burton
capitalized on the current computer games mania by creating a computer coach .-
for PLATO's "How the West Was Won" called simply WEST (Brown & Burton,
1982). WEST can watch two people playing each other and decide on its own when
to interrupt politely. It can then point out to a player that, if he had only paid
more attention to his opponent's moves, he might have discovered a strategy he
did not possess. The obvious strength of this coach is that it can make use of the
skills of the opponents without having to create unique scenarios for tutoring. It
can in fact facilitate peer tutoring. ARI is sponsoring work to continue some
aspects of this research and development.

Finally, I want to describe briefly a project called STEAMER (for a more
detailed view, see Jim Hollan's contribution to this workshop). STEAMER has
tried to integrate some of this research and development to provide intelligent
computer-based instruction in propulsion engineering. This work arose directly
from SOPHIE, another Brown, Burton, and de Kieer project (1982) providing
explanatory qualitative models for training electronic troubleshooting for a
relatively simple amplifier circuit.

284

_-9



applications permits. This may be a Pollyannic vision of the future, but it is
certainly one that must be taken into account in analyzing current directions and
policies for training technology.

NOTE: The views expressed in this paper are the authores and do not necessarily
reflect Rl's official policy. Arpanet address: Psotka @ NPRDC. Mail address:
Attn: PERI-IC.

References

Brown, 3. S., Burton, R. R. An investigation of computer coaching for informal
learning activities. In Sleeman, D. and Brown, 3. S. (Eds.) Intelligent tutoring
systems. London, England: Academic Press, 1982.

Brown, . S., Burton, R. R., & de Kleer, 3. Pedagogical, natural language, and
knowledge engineering techniques in SOPHIE I, I, & IlL In Sleeman, D., &
Brown, 3. S. (Eds.), Intelligent tutoring systems. London, England: Academic
Press, 1982.

Brown, . S. Learning by doing revisited for electronic learning environments. In 0 .
White, M. A. (Ed.), The future of electronic learning. Hillsdale, NJ: Lawrence
Erlbaum, 1983.

Buchanan, B. G. Research on expert systems (Report # CS-81-837). Stanford,
CA: Dept. of Computer Science, Stanford University, 1981.

Clancey, W. . The epistemology of rule based expert system: A framework for
explanation (Report # CS-81-896) Stanford, CA: Dept. of Computer Science,
Stanford University, 1981.

Clement, 3., Lochhead, 3., & Soloway, E. Positive effects of computer
programming on students! understanding of variables and equations. .-
Proceedings of the National Association for Computing Machinery Conference,
Nashville, October 1980.

Feigenbaum, E. A., & McCorduck, P. The fifth generation. Reading,
Massachusetts: Addison-Wesley, 1983.

Nickerson, R. S. Computer programming as a vehicle for teaching thinking skills.
The 3ournal of Philosophy for Children, 1983, 4 4'2-4&

O'Neil, H, 3r. Learning strategies. New York: Academic Press, 1977.

Oriansky, 3. Have we increased the productivity of training? Proceedings of the
Society for Applied Learning Technology, July 13-14, 1983.

Stevens, A., & Steinberg, C. Project STEAMER (NPRDC Tech. Note 81-21). San
Diego: Navy Personnel Research and Development Center, 1981.

285



ABOUT THE AUTHOR

Mr. brian Dallman is a Research Psychologist for the
Training Systems Division of the Air Force Human
Resources Laboratory. Since 1973, Mr. Dallman's - .
responsibilities with the laboratory have included the
development and evaluation of the PLATO IV system
within the Air Force vehicle maintenance courses; the
development of the student progress management
component of the Advanced Instructional System (AIS); the -
evaluation of the AIS; and the development of the
interactive graphics simulation system for the Air Force's
maintenance training simulation program. Currently, he is
a member of the TRIADS--a joint services computer-based
instructional system group--and is also responsible for
preparing the Air Force's program to develop and. apply
artificial intelligence technology to maintenance aiding
and training.

286

0



Depot Level Problems in the Testing ofPrinted Circuit Boards

Dr. Rob Mine •
(W) Air Force Institute of Technology

Wright-Patterson Air Force Base

ama Introduction

The Air Force today has a severe problem in the automatic testing of
analog cards. Most automated test programs run a structured series of tests
requiring many hours. Even after several hours of testing, the program has
reduced the fault to as many as 10 potential components. In most cases, it is not
possible to reorder the tests. As a result, there is no way to indicate to the
system that the last test is the one which is most likely to identify the fault.

At the Air Force Institute of Technology (AFIT), we are working with
Warner-Robins Air Logistics Center (WRALC) to develop an expert system for the
diagnosis of faults in analp:g&c,,rcuit cards. WRALC has a large depot of
Automated Test Equipment'(ATE) which runs virtually 24 hours a day, 7 days a
week. Their problems include inflexible programs which proceed in sequence even
if it is believed the failure to be located would be found by one of the last tests to
be run. Some of these programs take 3 2 hours to run.

One of the "biggest problems" cited by one of the WRALC people is that
the ATE doesn't catch all the failures. In many cases, some conditions of some
components are never tested. This leads to frequent RETOKs (or Re-test OK).
Many cards circulate through the system, failing at one level and succeeding at
another. Ingenuity must be applied to manually detect the failure in this case.
Ambiguity is another problem, (e.g., the F-15 AIS normally isolates to one
component, but can provide as many as 15 suspected parts); memory devices are
especially prone to high ambiguity isolation. In these situations, the operators
often rely on a "trial and test" approach to find the actual fault.

Another problem is that the program may isolate to a string of
components which theoretically would all be replaced. With some hybrids costing
$300-$3,000, this creates a significant parts expense. Even replacing a string of
cheap parts would require significant maintenance time. Finally, the ATE does
not isolate chassis problems (e.g., wires in the chassis). Some cards have very
long wires, which are optimized to be "points" in the circuit.

Another major problem is that the test equipment is very slow, requiring
many hours to test a single board. The programs are not easily modified and very _0
little documentation exists. Because test documents are binding though, there is
very little one can do to change the tests. After all this testing, they may have
missed the problem or may have isolated it to 5 or 6 components. They must then
employ highly trained labor to find the exact fault. It was felt that a system
which could isolate errors to one component quickly and accurately would present
a considerable savings to WRALC.

287



0

The current system consists of a test card mounted on an ATE. This
device then runs a predetermined set of tests, in the form of an Atlas program
(Atlas is the standard language for all Air Force ATE) over the card. If a specific
test is unsuccessful, the intervening components are identified to be replaced.
The tests are not independent of each other. As a result, each card must go
through the entire series of tests (taking as long as several hours). Actually, some
tests are independent of others, but no one seems to know which ones.

The Proposal

It is proposed to replace the current software with a program employing
Al expert system and heuristic search techniques. This program will base its
testing on a schematic diagram of the circuit board and the list of test
specifications which were originally used to write the Atlas test programs. This
program will use this data and a simulation or model of the functioning circuit
card to allow more detailed and guided testing. The ordering of the tests shall be
independent and every effort made to identify the unique component which is
faulted.

The Expert System

The system we will develop will be a "structure and function" expert
system. That is, its knowledge will be the structure of the system and the function _
of each subsection. It will base its reasoning first on the structure of the board. .
When it can no longer isolate the fault based in the structure, it will reason about
the function of the isolated region and what may have caused the particular
problem. We believe this to be a standard architecture which future maintenance
systems should use. Specifically, two sets of information should be used. First is
the structure of the circuit and the possible testing points. The program compares
the value at each point with the desired value and attempts to isolate the region
where the fault is.

Second is the function of each subsection. The group of components
work to achieve a certain output. It is desired to reason about how this output is
formed and how it may be incorrect based upon its overall function. In most
circuits it is possible to isolate to subcircuits of about 10 components. _

Our system will contain the following sections:

The test harness. This will be the existing ATE.

The test board. This will be the board which is being tested. It will be -

connected only to the ATE. Initially, this will be the CP power supply card from
the F-15.

288

0



The model board. This will be a computer model of what the board
would be like if it were properly functioning. This does not have to be a full
simulation of the board, but only needs to contain the proper values for all points
on the board under the anticipated test conditions. It is hoped that past 0
simulations developed at WRALC will aid in this. This model will be consulted for
each test to determine whether the board is at fault at any intermediate node.

The reasoning module. This will be the main program. It will control
which tests are performed, in what order, and which faults have been identified.
The reasoner will control the ATE via Atlas code over the appropriate interface 0
(RS232C). It will keep a history and explanation of each test as well as the status
on each component of the card. The reasoner will be responsible to keep test
records, histories, and reports for later analysis.

The circuit diagram. The schematic diagram of the circuit board will be
entered in the form of a network. The reasoner will use this to guide its tests and 0.
the focus on potentially bad components.

The user interface. The user shall have the capability of ordering the
tests, selecting individual portions of the board to test, and demanding
explanations of why a certain component is considered bad. -

The Basic Algorithm

The user interface will first initialize the system and perform the safe to
turn on tests. The user will then select the particular tests or ordering of tests. -
The users shall be able to inspect the current list of tests and easily edit this list.
The user may also set the level of interaction required at each test. An easy to
use interface is preferred. Each test will know what tests must be performed
before itself. This sequence will be maintained by the system.

The reasoner will then conduct the first test on the list. It will direct
the ATE to perform the tests using Atlas code and wait for the result. If the
result is different by more than the tolerance from the desired result, further
diagnosis will be conducted. If the user has requested, a report will be made on
each test. If the test is successful, the components whic are known to be
functioning will be marked in a component status entry in the schematic model.
Note that a successful test does not mean that the component works over all of -

its specifications. The reasoner will continue through the list of tests to be
performed until the list is exhausted.

Before the tests the following data needs to be established. The
L schematic needs to be represented in the form of a network. Frames could be

used to allow the flexibility of properties, inheritance, and procedural semantics .
for each component. The hierarchical nesting of these could be used to establish
substructures on the card. Secondly, the Test Requirements Document (TRD)
needs to be used to identify the tests which must be performed. The most
automatic method of doing this will need to be exploited. At the very worst,

289

LO



existing Atlas programs can be examined to identify the basic tests and values
expected. The Atlas code to perform these tests will need to be developed, both
for the standard tests and the internal diagnostic tests. The simulation will need
to be developed based upon the schematic and the TRD values initially, but
including a one time simulation of the board. It is intended that the internal
testing of the board will be conducted only for the values used in the original
tests, so we will know in advance what input values will be needed. As a result,
other values can be computed off-line.

If a test fails, at the appropriate time for finer diagnosis, all possible
paths between the inputs and the outputs can be identified. This can be done by a
simple network search algorithm. Initially, this list of paths will be generated by
brute force. It is hoped that 'later some good heuristics can be devised to provide
a smaller set.

Each of these paths is then checked with the status of each component
on the path. Paths or subpaths of all valid components are then eliminated. All
other components are marked as suspect. If only one component is labeled bad,
then no further testing is done at that level. If there is already a bad component,
it will be assumed that this is the reason for the failure. This is an initial
assumption only and will be replaced later.

At the end of each test, a set of production rules will run. These rules
will look at the results of all the tests to date and embody the knowledge of the
expert diagnosticians. They will see if any standard problems have arisen and use
these to conclude as to the real fault or further guide the search.

A new set of tests is then devised to test each of the paths. Preference .*
is given to global tests which can test all or part of the subpaths. If there are
none, then the paths are ordered according to how likely they are to be wrong.
The first (next) path is explored from the input end to the output end. At each
subnode, the current value is obtained from the ATE. If it is different from the
simulation board for the same conditions, then it is marked bad and we are
finished with this test. Otherwise, the next node is checked. A later test may
mark a questionable node as "okay."

Once the initial framework has been developed and proven, it is intended
that a more elaborate search strategy can be explored. There is much interest in
the Al world in this area and programs such as SOPHIE, ARBY, DELTA, DART,
STAMP, and NDS may influence how this is implemented. _ _

When all tests have been completed, or when the user requests, the
status of all components is reported. All bad components are noted as well as all
components still marked "questionable" and those marked "okay." It is assumed
that current methods are so slow and inefficient that the extra search and lack of
optimizations in this approach will be tolerated.

When the tests have been isolated to one group of components, the deep
reasoner will be called into action. It will first look at why the test was wrong.
In general, there are only a few classes of failure for each test. Examples are:

290



there may have been no output, output was high, output was low, or output was
only slightly out of tolerance. Most current systems do not distinguish between
these cases.

If the output is only slightly out of tolerance, then the system will check
for the presence of trim resistors. This is a common type of failure.

If the output is off considerably, deeper reasoning needs to be employed.
In most systems today, the technician attempts to change the active component- 0
in the call-out group and see if the problem is fixed. If not, he changes all the
components. The system will be limited by the type of information which the test
harness can collect. It will try to use all information it has to decide on the most
likely failure.

Eventually, we hope to reason about the failures from "first principles."
For example, we know that a capacitor appears as an "open" at low frequency and
a "short" at high frequency. If a high pass filter is not allowing the signal to be
generated at high frequency, we can reason this way:

1. The signal should be present at high frequency.

2. If the capacitor is a short, the signal is present.

3. The signal is NOT present at high frequency.

4. The signal IS present at low frequency.

5. Conclude: the capacitor is not correct.

In this paper, we have outlined a structure and function expert system
for the diagnosis of faults in printed circuit boards. The state of the art is such
that we know how to perform the isolation to a group of components. The state
of the art now needs to develop the techniques to decide which of a group of
components is actually faulted.

As a final note, the state of the art in Al and the state of the art in
operational testing are very different. Before Al can really help the testing
community, it will be necessary to advance the operational state of the art.

291



r-.

ABOUT THE AUTHOR

Army Captain Robert W. Milne is an Assistant Professor of
electrical engineering at the Air Force Institute of S
Technology, Wright-Patterson Air Force Base. He is also
Director of the AFIT Artificial Intelligence Laboratory and
a consultant to the Army Al program. Capt. Milne holds a
Ph.D. from the Department of Artificial Intelligence at the
University of Edinburgh and a B.S.C. in electrical
engineering and computer science from the Massachusetts 0
Institute of Technology. He has published professional
papers in the field of artificial intelligence and is a
member of the American Association of Artificial
Intelligence and the Association of Computational
Linguistics.

2

292



Expert Systems in Maintenance Diagnostics for

- y Self-Repair of Digital Flight Control Systems

* '~J ohn Davison
Air Force Flight Dynamics Laboratory

0
o A couple of weeks ago, the Flight Dynamics Laboratory (FDL) of Wright-a. Patterson Air Force Base met with our sister laboratory, the Avionics Laboratory,

to exchange some ideas on artificial intelligence. I briefed them on this workshop
program and they were surprised to learn that FDL was going to demonstrate a
maintenance diagnostics system this spring. They had not planned to do this until
1987. They suggested that I contact Dr. Richardson and this workshop and
communicate some of these ideas as they think this demonstration is a well kept
secret of the work we've been doing. However, I might add that we've been too
busy working to advertise. n -

I'd like to coveri three basic components of this program. One is an
overview and the progress of the program starting off with the battle damage
statistics that are supplied to us by aircraft battle damage repair people. -These
statistics are the drivers that influence the self-repairing program. They are
gathered primarily from Southeast Asian data, updated from the Falklands
conflict and Israeli data. Secondly, + would like -to talk briefly about the self-
repairing concept, and thirdly, the status of our expert system for maintenance
diagnostics.

Figure I assumes a four-to-one damage/loss ratio for a status of the
fleets during surge. The dramatic part about the top line is that after the second
day, as you can see, 68 percent of all the aircraft are out of commission. That's
not due to attrition alone; we have aircraft that are awaiting maintenance and in
battle damage repair. Those are pretty alarming statistics.

If we examine aircraft losses by functional area, we see that flight
control is a large contributor along with fuel and fire explosion and propulsion
system. In aircraft damages by functional area of the return, flight control is
again a large contributor, around 18 percent. However, when we look at the
percentages of the aircraft returning with damage (see Figure 2), propulsion, fuel,
power, and, of course, structural damage are the real drivers. I don't know why
structure isn't 100 percent, I think everything has to go through the structure. I
think this graph was based on small arms fire only. When we look at the repair
time it takes to turn the plane around, we see that flight control occupies the
majority of the median time to repair. Figure 3 shows that even with the advent
of digital electronics Lnd the complexity of the flight control systems, we're still
only at I I percent of the cost in the digital electronics. The drivers are still in

* the equipment areas, for example, in the servos.

As you'll see in Figure 4, the self-repairing system is broken into three
general areas. The first is the survivability of the aircraft where we're concerned
with real-time configuration in case of system faults and battle damage where we
reconstruct the forces and moments using the remaining surfaces. For the quick

293

!_ _0



LAJ LS

CD cm

CD cL:L~ m I ,7

cE I + C3
cc- +

IC

LU-
C-4 C)4.

LUm

294.



0

1N3WAVWV

cma

S31NOIAV m

-~ 83MOd Go
cm0

N

CoL TU CN Z .

L in

LA..
N

LU

LU 3I1n~

295



LU ~ ~

ccm

COD,

LU cu
* m .2;

C. ccL

UL.
0- C'43 b

C-3 cc V
..(M**

coo

gRlj

5Z

AiCO
296 ---. 91cc



LI.. 0

C22
UJl coo

C00

C=) coC'n 93

LLUJ C= LLJ C2 r

2! C-) 0 w
UOLA- ZL O

A _a 
-S=C

LL. LUJ

LLJ c OEi

LUL

C* Q) CD LLJ

-m CMS cZCL -

4"4
act 297



-- . .. .. . . - -c

turn around of the aircraft, we're looking at automatic maintenance diagnostics
and we're using an application of expert systems. Because we can detect and
classify these failures, we want to let the pilot know what capability remains, not
just what has failed.

To take a general look at our system in a single channel, the blocks in .
solid lines in Figure 5 would be a standard flight control system. The key in this
system is our system impairment detection classification function. This feeds
into a drop-in module where we remix the flight control laws and send them back
to the flight control computer without changing those flight control laws at all. 0
As long as we're able to do that, as I mentioned, we give the pilots a real-time
status of what are the operational capabilities. For example, we might tell them
that with the remaining capability they can only pull 4Y G's as opposed to 6Y2.

In our maintenance diagnostics, we think that we're going to follow the -
TAC two-level maintenance concept so that we can data-link figures back to the 0
forward base. If the pilot has a servo that has failed or experienced damage, the
mechanic will be waiting with a part at hand as the plane taxis up. However, it's
really not our idea that maintenance begins in the air. Other people have been
doing it for a long time. We do think that we have a little different approach to
the problem, though. This is where we get into our maintenance diagnostics ......
computer. In our approach, the troubleshooting expert is paramount. We're also .
going to use in-flight faults, the situation data, and we're going to incorporate the
technical orders and the illustrated parts breakdown in our maintenance
diagnostics computer.

The general components of the expert system are the same. As you'll
see in Figure 6, in the knowledge base we use the heuristics and the rules of logic •
and in the situation base we use current data, historical facts, and background
information. That's also where we put all our flat file data for all the prioritized
possible faults. It goes directly into our maintenance computer, and that
computer interrogates the maintenance person. For example, we're experiencing
ir-flight faults and, let's say we had a problem in the pitch axis, it would drop us "
right into the pitch axis diagnostics. Part way through the diagnostics the
computer may ask maintenance if the follow-up potentiometer in the pitch
actuator has been checked. If the maintenance person punches the "no" button,
the next question would be, "Do you know where it's at?" If the "no" button gets
punched again, we bring up the illustrated parts breakdown technical order file
and draw a tone over the follow-up pot to indicate exactly where it's located. 4

Then we explain how to go about checking that and clear the system. •

We're looking at two possible applications. For new applications, we'd
like the computer to be autonomous and reside in aircraft. Right now, we're
trying to impact existing aircraft like the F-I and the F-16 (Figure 7).

Question: I have a problem: Why would you do that when it's sent in -

subject to battle damage?

Davison: It can be stand-alone, or because it is stand-alone, we can roll
another one up in front if it does have battle damage. But we don't want to get
into the redundancy, triplex and quad of everything in airplanes. It can be easily
substituted. _

298



.2 1

a -"m I- I 

CM- I- L _%_

0- 1 -z

A- =S(

C-,.

M co

, .- ',Uh : i

I . ,, al

- - . . .

C/3~ 21

:3, • -, ,c

__ L.

2Q9J



C-25

CCC

'5' ~&JJU

I-.

~~L ILSLU-
am CDL -.j- "

C. LJL j

LU- Cm~LLC-4 a
a a - - a -mCL 2 '

=C2

2 cc

LLJ~ uz Q ;Q

3000

act1



LUJ

I-L

C= D

cm~ -~/ Lcm

C.D LU -

CD0

LL.

CoI >-P

LLA

U!-

INC,

301



I heard a lot of conversation this morning about the quality of
maintenance personnel and the problems involved with troubleshooting the
system. Let me tell you that flight control systems are complex. There's digital, 0
quad, fly-by-wire systems, and I don't care if you're a control engineer or a
mechanic, when you open up that panel and try to troubleshoot that system, it's
like a hog looking at a wristwatch. I mean, you don't know where to begin. We
think this self-repairing system is the only way we can circumvent that problem.

We think we're really a little bit ahead of the game because we've relied -
on General Electric and have a contract with them to develop this system. We're .
riding on the coattails of their DELTA system, the locomotive system for
maintenance diagnostics. This is supported with both Air Force funds and IR&D
funds. In order to develop their DELTA system, it took them 12 months to get a
50 rule feasibility demo model. It took another year to bring it into lab prototype
and a third year to a field prototype model--that's at around 500 rules. To get
into a 1200 rule system, it's 4 years and about a megabyte of memory. •

Figure 8 shows where we are right now. We're going to use the F-18
because it's the only production digital fly-by-wire system available now. We're
going to develop a 50 rule system and demonstrate this in the coming spring.
We're moving this technology into our AFTIF-16 and by March of 1986, we hope to
have a 1200 rule system developed and in place.

To wind this up, we want to look at both the on-board diagnostics and be
able to data link this data back to the forward base. This will provide rapid
assessment of fault and damage. We want to incorporate all the technical orders
into the flight hardware. We want to impact that median repair time of 43 hours
(rf. Figure 2) and reduce it by a factor of five. By incorporating those technical -,
orders in there, we eliminate a ground-support function, so we don't have to
divert to the large fixed infrastructure-type bases. We can divert anywhere, the
maintenance people can rendezvous with the airplane and hopefully perform
maintenance that would normally be performed at the depot level.

Question: I don't understand why you call it self-repairing?

Davison: Well, we're reconfiguring the flight control laws. Regarding
self-repairing, we're talking about the system level. We're not using artificial
intelligence to reconfigure the system; that's another presentation.

Question:- Doesn't the maintendnce person still make the replacement? -

Davison: Yes, but we're saying that we can do away with the
unscheduled maintenance and continue to fly by being able to detect, isolate, and
recover from any failure in the system.

Thank you.

302



I-.- cc~Y

LJ

CMI C/)c

C.3,

C0

cm LL

LLL .
C:)
LOJ

LL-J

cLI LJ

COO,

_ C- C0

C--
p LUJ L LJ-.

C-,

C/. UM

303



ABOUT THE AUTHOR

John W. Davison is a Project Engineer in the Flight Control
Division of the Air Force Wright Aeronautical Laboratories 0
Flight Dynamics Laboratory. He is responsible for project
planning and technical management of R&D programs
dealing with flight control system reliability and safety.
During the mid-1970s, Mr. Davison served as lead engineer
for reliability and safety analyses of the Laboratory's
C-141 All Weather Landing System flight demonstrator. -

He was subsequently instrumental in focusing emphasis on
the need for development of software reliability prediction
methods. He currently directs laboratory activities in
self-repairing flight control, a concept involving in-flight
reconfiguration and advanced maintenance diagnostics
based on expert system concepts. .

3

304

S



Artificial Intelligence Contributions to Training
and Maintenance

i J oseph Psotka 0

. U.S. Army Research Institute .

Abstract

a. Artificial intelligence is rapidly becoming a practical and useful
technology for training and maintenance. This paper provides an introduction to

* its uses in maintenance training, drawing on current research funded by the Army.
After a description of this work, a call is made to fund more exploratory research,
expand the base of competent professionals in the field, and begin the
complicated process of evaluating this new technology in order to diagnose its
failings and hasten its development.

Introduction

My sincere thanks and appreciation go to our hosts for this workshop on
artificial intelligence and maintenance training. The timing could not be more
appropriate as the very many fine activities described in this volume testify. The
development of training systems, particularly maintenance systems, is about to be
complicated in quite new and, in many respects, unanticipated ways. Artificial --

intelligence (AI), knowledge-based systems, and expert systems for training and
maintenance are becoming an overnight success after some 20 years of hard
effort. We must prepare ourselves to use them wisely. The complicated issues
that have been- raised in connection with computer-based instruction in the past
(cf. Orlansky, 1983) are all reissued in new guise: there is, after all, a continuity
between this new application of Al and the older (but still developing) forms of
CBI and simulations. We must be careful. Yet, the promise is also so clear that
we must be prepared to act quickly and not squander a very real opportunity.

What is Artificial Intelligence?

The phrases "artificial intelligence," "knowledge-based systems," and .

"expert systems" are used interconnectedly throughout this paper. None of them
have precisely defined meanings. Al is the most generic of the three, since it
involves activities like pattern recognition and voice synthesis and recognition
that are generally not central to knowledge-based systems and expert systems.
Expert systems are the mind of any Al program. An expert system incorporates
inside a computer all the rules of action or thought a human expert has about any
well-defined domain of knowledge or skill. For instance, John McDermott's Vax
configuration program incorporates 500 rules extracted from a professional who
was paid very highly for just knowing these rules. It must have been very
disappointing to find out that a lifetime of expertise could be summed up in so
few rules.

305



Knowledge-based systems are all expert systems, and they are the best
known and understood kind of expert system. Very little is known about how to
use expert system technology for training highly practiced skills and automatic
skills like driving tanks and shooting, but arcade and video game technology is 0
rapidly pushing in this direction.

All of these Al applications employ the symbol manipulation powers of
the new generations of computers to solve problems. Problem solving seems to be
at the heart of all expert systems. Expert systems technology provides a way to ...
extract knowledge from an expert and place it into computer symbolic forms (in a
process called knowledge engineering) and then use that knowledge base to solve
problems. Problem solving in this context has a very broad definition, covering
things ranging over algebra problems, medical diagnosis, mechanical or electrical
maintenance and troubleshooting, all the way to training field generalship or even
running an automated tactical operations center.

Opportunities for the Army

Three rapidly evolving developments make the time ripe for applying
artificial intelligence approaches to the Army's severe training and instruction
problems. The major development is rapidly improving hardware that has 0
produced personal LISP machines at low cost (20 - 30K) and the power of last
year's mainframes. The second development is in the application of "expert
systems" technology to a host of real world problems (ranging from medical
diagnosis to mineral prospecting) that have demonstrated the utility of artificial
intelligence techniques in very dramatic style. Finally, current state-of-the-art
in computer- based training and instruction has advanced to the stage where the -
leap to using "expert systems" approaches is practical and possible: the basic
knowledge is there to model soldier, task, and instructor characteristics with
fidelity in a machine.

These technological windows of opportunity are opening in time to
address some pressing Army needs and challenges. The Army of the 1990s is
increasingly a high-technology Army and this is imposing tougher new demands on
its soldiers. Maintenance training needs to become much more sophisticated and
individualized. The distributed battlefield of the future will also make
unprecedented demands on the cognitive decision making skills of its soldiers.
They need to be prepared intellectually to make fast, appropriate decisions and
use complicated strategies and technologies in order to win the war. What better -

way exists than to use high technology in order to train soldiers effectively to use
high technology on the battlefield?

Previous Work

During the past several years, ARI has engaged in a concerted program
of research and development to prepare for this activity. Work on
computer-based instructional systems has progressed on several fronts, ranging
from the hand-held, talking, technical term tutor to a computerized videodisc

306



instructional system (SDMS). Training and simulation work has progressed from
3-D computerized systems like AMTESS to the current proposals for Al-based
maintenance tutors. The groundwork for specific artificial intelligence
applications has been carefully laid with a IM per year jointly funded ARI/ONR 0
program supporting basic research in artificial intelligence applications to
maintenance and training. This work has reached the advanced development stage
where several projects can lead to working demonstrations in the next few years
if the critical funding is made available.

Current Al Applications

The Army is in the middle of several initiatives that have the potential
- of providing significant funding to Al research and development in general, and

maintenance training research in particular. Let me try to provide a brief
overview of these programs.

* ARI will provide funding to several Al activities, to be
described in more detail later in this paper.

* ARO is in the process of selecting a U.S. institution of
higher learning with graduate level programs to develop a
capability for research, education, and training in Al to
help fill Army needs.

* TRADOC has formed a General Officer Steering
Committee to oversee the development of an overall Army
Al action plan by November 30, 1983.

* DCSRDA in concert with several other Army agencies,
including DARCOM, HEL, TACOM, ETL, and ARI, has
developed specific demonstrator projects, including:

I. Reconnaissance Vehicle;
2. Ammunition Supply Robot;
3. Intelligent Display;
4. Expert Medical System;
5. Intelligent Maintenance Tutor.

All of these activities are providing high level and very visible support to Al
research and development within the Army. It is certain that these plans will
amount to something significant, so we can look forward to a period of productive
research and development.

~-S•

Current Academic and Commercial Efforts

Although there are plans for applying Al techniques to Army problems,
we must examine the larger world of academic and commercial development for
examples of how these systems work and what training purposes they might serve.

307

p _ 0



The best known and most mature developments of expert systems for
problem solving have occurred in medicine. CADUCEUS by Myers and Pople at
CMU, and MYCIN by Shortliffe at Stanford. Both systems are designed for
decision making and diagnosing diseases to help an expert physician interpret a •
case. This is an important point because it has led people to believe that expert
systems can only help experts of a similar kind (in this case doctors) do their job
better. That is basically a faulty conclusion: expert systems can both act as
consultants to experts, and they can replace experts. However, most of us do not
yet have to worry: there are some rather severe restrictions on the kinds of
expertise that can be entered into expert systems. Medicine provides virtually a •
prototype for this kind of expertise.

1. The knowledge domain must be bounded and well
defined. It must be small enough to be manageable; yet
large enough so that conventional, linear algorithms and
programs will not work. .

2. The problem or task domain is intellectual rather than
dependent on sensory or motor skills. The problems are
defined by a large number of interacting variables that
require human knowledge to resolve. .0

3. At least one and preferably more human experts exist
who can solve the problems. These experts must be
able to verbalize their reasons in forms that can be
converted to rules; that means they cannot rely on
common sense for an answer; or if they do, then
someone must be able to analyze their cognitive -.

processes into rules.

Medical expertise clearly fits these constraints. Political savvy probably
does not. And many areas of expertise fall in between.

CADUCEUS has a very broad expertise. It covers hundreds of diseases in
internal medicine. It takes into account thousands of symptoms and lab tests. It

does professionally well against diagnostic tests of its abilities. The home
computer will truly be here when this fine program is available for everyday use.
However, this represents the result of 10 years full-time commitment by an
expert internist and the help of many colleagues and students.

MYCIN is much narrower, but deeper. It deals only with the diagnosis
and treatment of organisms that infect blood or cause meningitis. In direct tests,
it has achieved performance comparable with experts in the field (Buchanan,
1981). Furthermore, it has spawned a whole family of expert systems.

By taking away the specific medical knowledge domain, a shell of - .
essential or empty MYCIN has been formed, called EMYCIN. Given a new
problem domain, EMYCIN provides help in constructing an expert system to solve
the problems. EMYCIN assumes an appropriate representation format for the new
knowledge base (production system rules) and goal-directed backward chaining as

308

- . . .. ,



1w mm• u, .I I El 1111 U .°IE I - -

the appropriate inference mechanism. Production systems are simply collections
of IF-THEN rules. Goal-directed backward chaining is the same process you use
when you decide to get 40 dollars out of the bank because you are going to dinner.
Other forms of knowledge representation and other inference mechanisms are 0
available, but these have so far proved to be most useful.

Combining EMYCIN with new knowledge domains has yielded useful
expert systems for pulmonary diseases (PUFF), blood clot diseases (CLOT),
structural analysis (SACON), filling in and debugging these expert systems
(TEIRESIAS), and explaining and tutoring these systems (GUIDON). 0

GUIDON (Clancey, 1981) is of special interest to us as this expert system
is for instruction and training. In a project funded by ARI, Clancey at Stanford's
Heuristic Programming Project has converted MYCIN into NEOMYCIN.
NEOMYCIN reconfigured the rules in MYCIN so that they became more
psychologically plausible as the basis for reasoning diagnostically. This allows 0
GUIDON to provide test cases to students, allow them to analyze NEOMYCIN's
diagnoses, and by interpreting the students' analyses, build up student models of
their knowledge base and diagnostic reasoning abilities. Obviously, GUIDON
represents a very large step forward in individualizing instruction and getting the
computer to become a tutor.

A discussion of intelligent computer-aided instruction (ICAI) and tutorial
systems would be utterly inadequate without mention of the dramatic and
pioneering work of John Brown and his colleagues at Xerox PARC. In a now
lengthy series of impressive tours de forces, Brown (1983) and company have
provided imaginative demonstrations of how to change our mind set about,-
computers in instruction. His fundamental thesis is that these sophisticated S
symbolic environments provided in personal LISP stations or Smalitalk
environments can expand the use and effectiveness of learning-by-doing through
discovery and apprenticeship.

Learning-by-doing environments can provide a tremendous opportunity
for students to Lharn about themselves and their own thinking processes "_..
(metacognition) and their learning strategies. As an example, Brown and Burton
capitalized on the current computer games mania by creating a computer coach
for PLATO's "How the West Was Won" called simply WEST (Brown & Burton,
1982). WEST can watch two people playing each other and decide on its own when
to interrupt politely. It can then point out to a player that, if he had only paid
more attention to his opponent's moves, he might have discovered a strategy he
did not possess. The obvious strength of this coach is that it can make use of the
skills of the opponents without having to create unique scenarios for tutoring. It
can in fact facilitate peer tutoring. ARI is sponsoring work to continue some
aspects of this research and development.

Finally, I want to describe briefly a project called STEAMER (for a more -A._
detailed view, see Jim Hollan's contribution to this workshop). STEAMER has
tried to integrate some of this research and development to provide intelligent
computer-based instruction in propulsion engineering. This work arose directly
from SOPHIE, another Brown, Burton, and de Kleer project (1982) providing
explanatory qualitative models for training electronic troubleshooting for a
relatively simple amplifier circuit.

309



In the first phase of STEAMER (Orlansky, 1983), a learning-by-doing
environment was created with a sophisticated graphics interface that simulated
thousands of components in a naval steam propulsion plant. This graphics package
is a major product for instruction by itself. It may now be used within this Lisp S
environment for other kinds of instruction, or other LISP environments, such as
LOOPS, may be converted to perform similar functions. This part of STEAMER
provides a unique audio-visual instructional aid, and it is being used just for that
purpose in a Navy setting.

The second phase of STEAMER is now underway to build a computer
coaching facility into the same environment. Two strikingly different approaches
are being used. One carries out a sequential dependency analysis of appropriate
steps in any procedure of running the plant, i.e., this meter must be checked
before that valve is opened. This leads to the sort of tutorial feedback that says,
"Sorry, you should have checked A before doing B; you just blew up the ship."

The second form of tutorial tries to avoid the complexities of
understanding the functioning of each single component and tries to create a
deeper conceptual understanding of the causal connections among things. For
instance, it may provide a moving graphic of a steam valve that can be controlled
with all its functioning parts in display. A student can manipulate this model in
gross ways, like increasing the pressure at a point and see, visually and
dynamically, what the consequences are. Hopefully, this kind of learning, while it
does not provide engineering competence, does provide the kinds of mental models
that allow expert technicians to operate and troubleshoot the system effectively.

None of these ICAI projects have been evaluated in any rigorous fashion.
In a sense, they have all been toy systems for research and demonstration. They -
have all raised a good deal of excitement and enthusiasm about their likelihood of
being effective instructional environments. With the dramatic decreases in "
computer hardware costs we have recently seen, delivery vehicles for systems like
these in the $10,000 range are a reasonable estimate. Clearly, it is the judgment
of many that implementations of these systems in a variety ot environments will
prove to be highly cost effective. The real difficulty in making application
decisions is in foreseeing the role that they will play as stepping stones to the
future: to imbedded training devices; on-the-job computer aids for maintenance;
personnel assessment devices that simulate real tasks; and to devices that
actually carry out real tasks, such as imbedded maintenance or robotic control.
For even if these systems are not yet cost effective, the only cost effective way
of eventually deploying these systems may be to start using primitive and even S
unwieldy systems now. [his is a difficult but very real problem.

Cognitive Science Technology

The productive application of artificial intelligence to training and
instruction rests heavily on the technology base of understanding provided by good
cognitive science research. This research is advancing rapidly to provide a richer
theory of learning that can actually be used in ICAI environments. Two
provocative components of this research provide some insight into how ICAI can

310



be used to provide superior instruction and training. The first component to be
described will be an analysis of misconceptions, and the second will be the use of
learning strategies. _

Misconceptions

Consider the path a projectile will take after emerging from a curved
tube at high speed. For both shapes in Figure I the correct answer is a straight
line, tangent to the curve. Notice that more people said the exit path would be 0
curved for the spiral tube than the semicircular tube. It is as if the extra turns
were more likely to impart their curved "momentum" or "force" to the moving
object. In fact, this bears some similarity to medieval impetus theory and
Aristotelian ideas about motion. Other evidence strengthens this suggestion. For
instance, similar misconceptions can be found for dropping things from airplanes,
tossing coins, and other problems with moving objects. The striking fact about
this finding is that all these people are high school graduates who have taken
physics.

The second area of misconceptions deals with equations (Figure 1). Any
relationship that can be represented algebraically can be expressed in words.
Clement, Lochhead and Soloway (1980) report that 37 percent of a group of
engineering students wrote 6S=P for 'There are six times as many students as
professors." Apparently, one source of this problem is that students deal with the
equal sign as a static rather than a functional symbol. It is easy to imagine a
room with 6 Ss and IP and use the faulty equation to describe it. It is much more ..

difficult to understand that this description calls for an operation--multiplication
of P by 6-to achieve the goal of equalizing the P side of the balance.

Both misconceptions proclaim that simple errors may arise from complex
and detailed systems of thinking that may in fact be transitional to more
complete ways of understanding a knowledge domain. That is to say, the errors
may not just be random, but arise systematically from erroneous ideas or
misconceptions that people hold about an area of knowledge. Just such a view of o
errors has been studied within arithmetic by Brown and Burton (1982) and used as
a diagnostic aid for prescribing remedial instruction.

The analysis of such misconceptions is proceeding in other knowledge
domains. Identifying a misconception is a very difficult, time-consuming task;
but it is well worth the effort because instruction can then be explicitly designed
to deal with it and produce longer lasting and more immediately effective
instruction. From the perspective of the present talk, it also has the powerful
advantage that this kind of analysis is just right for ICAI systems that have to be
explicit about their diagnostics and forms of remediation.

Learning Strategies

Cognitive science is contributing important knowledge about how
formerly mysterious components of thinking, like intuition, inference, and
problem solving, are carried out. More important, there is every indication that

311

7-



ClE.

ZLu U) zcl)

LLJ(0
C,))

z
00

0 ao-C
C,) H -9

(I)

312



these mental processes can be taught explicitly, although not easily (Nickerson,
1983; CYNeil, 1977). It may take the special audio-visual and explanatory powers
of a sophisticated computer system to realize the full potential of the learning
and teaching strategies that are being uncovered.

A short paper like this can only begin to give a flavor for the vitality of
the research going on in this area, and its importance for ICAI. Much of the
important work deals with working out the details between experts and novices, in
terms of the strategies and heuristics they use, the structure of their knowledge,
and guiding metaphors and analogies of their thought. By understanding these
relations it is hoped that procedures for speeding up the expert-novice transition
can also be found.

Experts carry out many of their activities automatically, below their
general level of awareness, with little cognitive overhead or interference with
other tasks. Speeding up the automaticity of these procedures in novices is
something that can be done by computer after an effective cognitive task
analysis. ICAI can help decompose tasks into manageable components so that not
only are the tasks easier to learn, but the general skill of breaking things into
bite-sized chunks can also be learned and used in many novel situations.

Most intellectual processes are not subject to awareness or
introspection. This has the unfortunate effect that most of us are not well aware
of how good our memory is; how many rehearsals it takes to remember a
telephone number; what our misconceptions about physics, public policy, or people
are; how well we can use imagery, analogies and metaphors; and a host of other
mental skills. The study of metacognition is exploring how to make these facts of
our mental life visible to us, so that we can begin to change and improve them.

Visual representations (graphs, charts, tables, working sketches, even
cartoons) are all relatively underused when people try to learn and understand new
material. Computers, with their dramatic display capabilities provide an
environment that opens up rich new possibilities for using these tools to enhance
our understanding and create new ways to learn.

Finally, learning without computers is often all too passive. Intelligent
CAI can help ask the questions that test the boundaries of our understanding;
provide counter examples to explode the limitations of overly narrow
comprehension; make new connections among the things we know; and provide a
flexible and generally supportive but challenging environment in which learning
can take place.

Conclusion

To do all this, the computer would indeed become a tutor, and replace to
some extent those who would now be trainers and teachers. However, this
development is still a long way off. Until then, however, ICAI systems will be
able to take on an increasingly heavier burden, becoming more intelligent as the
growth in technological power, cognitive science, and artificial intelligence

313

-



5 0

applications permits. This may be a Pollyannic vision of the future, but it is
certainly one that must be taken into account in analyzing current directions and
policies for training technology.

NOTE: The views expressed in this paper are the author's and do not necessarily
reflect RI's official policy. Arpanet address: Psotka @ NPRDC. Mail address:
Attn: PERI-IC.

References

Brown, J. S., & Burton, R. R. An investigation of computer coaching for informal
learning activities. In Sleeman, D. and Brown, J. S. (Eds.) Intelligent tutoring
systems. London, England: Academic Press, 1982.

Brown, J. S., Burton, R. R., & de Kleer, J. Pedagogical, natural language, and
knowledge engineering techniques in SOPHIE I, I1, & III. In Sleernan, D., &
Brown, J. S. (Eds.), Intelligent tutoring systems. London, England: Academic
Press, 1982.

Brown, J. S. Learning by doing revisited for electronic learning environments. In
White, M. A. (Ed.), The future of electronic learning. Hillsdale, NJ: Lawrence
Erlbaum, 1983.

Buchanan, B. G. Research on expert systems (Report #t CS-81-837). Striford,
CA: Dept. of Computer Science, Stanford University, 1981.

Clancey, W. J. The epistemology of rule based expert system: A framework for
explanation (Report # CS-81-896) Stanford, CA: Dept. of Computer Science,
Stanford University, 1981.

Clement, J., Lochhead, J., & Soloway, E. Positive effects of computer
programming on students' understanding of variables and equations.
Proceedings of the National Association for Computing Machinery Conference,
Nashville, October 1980.

Feigenbaum, E. A., & McCorduck, P. The fifth generation. Reading,
Massachusetts: Addison-Wesley, 1983.

Nickerson, R. S. Computer programming as a vehicle for teaching thinking skills.
The Journal of Philosophy for Children, 1983, 4, 42-48.

O'Neil, H., Jr. Learning strategies. New York: Academic Press, 1977.

Orlansky, J. Have we increased the productivity of training? Proceedings of the
Society for Applied Learning Technology, July 13-14, 1983.

Stevens, A., & Steinberg, C. Project STEAMER (NPRDC Tech. Note 81-21). San
Diego: Navy Personnel Research and Development Center, 1981.

314



ABOUT THE AUTHOR

Dr. Joseph Psotka is team leader of the Army Research
Institute's Computer-Based Systems Development Team. S
In this position, he is involved with the application of
artificial intelligence to answer the Army's needs in
combat, doctrine, training and instruction. Previously, he
was Senior Associate at the National Institute of Education
and taught at the University of Waterloo. Dr. Psotka
received his Ph.D. from Yale.

315

315



NAVAIR's Al Program for ATE

In
('V) Dr. Randall Shumaker

Naval Air Systems Command 0

OPm going to be doing two things today. I'm going to be summing up a fewoof the things I've heard at the workshop, but I'm also going to talk about the Navala. Air Systems Command (NAVAIR), Naval Research Laboratory (NRL), and Naval
Air Engineering Center (NAEC) program in automatic test program generation.
Part of the key to understanding some of the decisions we make in this program is

C1 the fact that even though it's very big, a ship only has so much room inside, only( has so many people on it, and is very far away from land most of the time. This
environment is the key to some of the things NAVAIR does in maintenance.

The key to the Navy's problem is that virtually all of the Navy's avionics S
testing at sea is done automatically. That is, there are no people involved. There
are several reasons for that, not the least of which is there is no room for all
those people that you need to do the testing. We test over 600 different pieces of
avionics (that is black boxes) and if you multiply boxes by cards inside, you see we
have a very serious problem because we have a very limited amount of space.

Additionally, test programs are costly--they range from $100,000 to over
$3,000,000, and these figures may be conservative. Other problems include long
delivery times, long execution times, and, worst of all, inflexibility--whatever you
get--is it. Your only other choice is to start over again and write another
program. Use of ATE for diagnosis implies replacement of all indicated fault
modules, regardless of the fact that it is likely that only one is actually bad.

For this program, we picked a target of opportunity--some area of Al
that looked like it was mature enough to really have a chance of producing a
practical product in a reasonable amount of time. The one area that has shown
some practical success from our standpoint is knowledge-based systems and it
appears to be applicable to the electronics area. Electronics is well defined, we . ..
have machinery on which it can operate, and we saw maturing in the
knowledge-based systems, so we chose to try to put all those together to generate
test programs. I will be talking a little bit more about our particular strategy
later, and I'd like to get some feedback on that.

Our knowledge-based system (KBS) approach is shown in Figure 1. The 0
key for us is that we own the ATE already and are not going to be dealing directly
with people. What we'd like ultimately to do is have the expert system deal only
with the automatic test equipment, generate questions to the ATE and it provides
measurements back. In effect, we have insulated ourselves from the

L human-machine problem, because the Navy's mode of diagnosis for avionics does
not involve interaction with people. An extension of this might have application
to training, but that's not our prime goal. That is, we're going to permit ourselves
to do things in a dirty way, use it if it works, as opposed to making it clean enough
to work with people.

317

_0

*1



0L LU

z LLUz

LU

~03
Z 0 Cc '
LU >-

0 I-
(.~~~C CE ( Jo

U,) LU

(Ew ~ + 0

LL

L 0

_ z 0U

x .)L

ui 0 (I

U.

-~W LU 0 cn ao Z 0 < U
0 M cc D 4
.i u. LU C

z Z CL
z. CL CL)

ca <

X LU S

318



We propose three modes of using a KBS test-generator. Now you may
find these less than optimum from the standpoint of AL The first mode that
we've chosen is off-line generation of test programs. That is, the ATE runs on
test programs generated off-line by the KBS. What we'd like to demonstrate is
that we can generate test programs that are no worse than manually generated
test programs, and are either cheaper to produce or can be produced in less time.
I think this is a pretty safe thing to do. A typical turnaround time for a test
program is 18 months. So if we can do it in less than 18 months of elapsed time,
then we will have made our first milestone. Doing it cheaper than the cost of
manually generated test programs is, I think, also feasible. You can buy a lot of
computer time for a million dollars.

The second mode of this program would be to have the KBS on-line to
the ATE; that is, operate interactively with the ATE. I think this is a much more
ambitious goal, because contrary to things you have heard before at this
workshop, the computer time is almost immaterial in the testing procedure. It's
the set-up time of the instruments and the measurement time of the instruments
that is time consuming. The computer itself is idle virtually all the time. It
executes a few instructions to command setups and measurements, and then it
reads, evaluates, and moves on. However, when we start searching large rule
bases and putting things together, it may turn out that computer time becomes a
significant part of the testing time. We may be able to eliminate 30 percent of
the tests and more than make that up in computer time. That's one of the
unknowns of this program. If we're just trading a slow knowledge-based system for
raw speed in testing, then we haven't really gained anything and that's something
that will have to be to be determined.

The final mode of this program would be a fully autonomous test system

that gets a functional description of the equipment to be tested and operates
without any intervention. In other words, the KBS "knows" what it's dealing with
and it tests completely. I think this is a very ambitious goal. We've staged our
plans in order to achieve success, because from my standpoint as a manager, I
have to keep providing products and achieving milestones to continue the
program. I can't wait for the millennium in 20 years. I'm going to be talking
about a bit of philosophy on that later on and once I start doing that, Pd like to
get interactive with the audience and see what happens.

We think knowledge-based systems are suitable for the electronics
domain, because it's a well established field. For one thing, it's made by people.
We design things, we presume that they worked once, and that knowledge is a big
plus. You can't always say that about general types of diagnostic problems.
Sometimes things could never have worked, and in that case it's very hard to fix
them. We think we can reduce the time to generate test programs, and our goal is
to do no worse in diagnostic capability than manually generated test programs,
and we hope, much better. ....

One subtle difference here between some approaches I have heard and
our approach is that we're not trying to capture an expert diagnostician's
procedures. We're trying to capture an expert test programmer's methodology.
There is a subtle difference because the test programmer is presented with a

319

' - . . . .... .; = - , ' a a A - 1 I " i " - . . . . .. . . I . . .- " | I| 1 . . . . . .



whole body of information about how something is supposed to operate--the block
diagrams, the schematics, the test points--and is producing a testing sequence
without having a particular example of the device to go by. Thus, the test
programmer has to traverse all possible paths for the diagnosis. To initially
generate test programs, we are going to be emulating the performance of test
programmers rather than test technicians. Later on, we assume that that can be
generalized into acting as a technician. We think we have a reasonable chance of
doing this because we only intend to fault diagnose to the module level, not the
component level, which is a considerably more difficult problem.

In the Navy maintenance procedure, you remove a suspected box at the
aircraft. You bring that box in and put it on one piece of test equipment which ' -
diagnoses a module or modules to be changed, which then theoretically puts the
box back into service. Replaced modules are then put on a different tester and
tested as a separate step. Thus, we will never be diagnosing to the component
level in one step and we get our successive refinement almost mechanically as a
byproduct of the maintenance strategy. We pull the box out of the aircraft
system, we take a subsystem of that as our next level, and then in a third step,
down to the component level.

We hope that adding Units Under Test (UUT) to an expert system will be
easier than starting all over again. In other words, we're going to pick a UUT, try
to generate automatic test programs for that, and the hope is (and we think this is
within reason) the next one will be far easier, with many reusable rules. [f it isn't
easier, we haven't done anything, all we've done is written test programs in a
different way. That is interesting to a certain degree, but doesn't have any
economic value for our purposes. So we're assuming that it's going to be easier.

We would like to think that ultimately the knowledge-based systems that
we develop would be fast enough that they would not require a separately
compiled test program. The target is to develop systems that are both usable on
existing generation of test machines and can be incorporated as part of future
testing systems.

I would like to re-emphasize that we don't have to deal -with the users in
the present maintenance methodology, so we're not concerned with a friendly
interface at present. As presently envisioned, there is no human user in our
systems. This saves worrying about color graphics displays, keyboards, and all
sorts of other aspects of dealing with people. So we can take shortcuts in the
design of the system that can give us some advantages.

Comment: You may also want to point out why analog systems were
selected.

Shumaker: We have chosen to look at analog boards first for a good
reason. There's no automatic way of generating analog test programs at the
present time. All the ways that have been proposed and evaluated seem to work
wonderfully well for small numbers of components, but don't work very well at all
for practical numbers of components. We have automated means of producing
test programs for digital systems. There are lots of reasons for it, but the bottom

320

-'0



line is that analog circuits are much harder to test than digital circuits. We rely
strictly on human input for analog systems. The level of abstraction you can get
with knowledge-based systems means that we don't have to deal with the circuit 0
at the component level. I saw someone propose using a simulation in parallel with
operation of the system to compare for faults. We've tried it, and it doesn't work
very well because you need a very large computer to hope to keep up with even
the simplest analog system. We'd like to look at the circuit at a much higher
level.

The plan is to have some sort of inference engine working on several

different sets of rules in a boot-strapping and hierarchical way. The first set of
rules would be generic: how does the ATE work, what sort of instruments are
available on it, how do you set them up? The second set would be general rules
about how to troubleshoot electronics equipment: what sort of measurements are
permissible and what sort of measurements are not permissible? It's basic 0
knowledge about how devices work and how they can be measured in an
electronics system.

To the generic rules, we propose to add class specific rules. There are
600 different types of avionics that we test, but they fall into general classes.
There are power supplies, radars, communication devices, and the like. 0
Conceptually, many of these things are very much the same in that the overall
functions and block diagrams are the same. You can impart certain kinds of
generic information about how things of this type work.

For each specific UUT, we propose to add specific data. Some of this
may be specific peculiarities of this particular unit, or they may be just
performance data, functional description in the form of a block diagram and
schematics.

We propose to first demonstrate vertically, that is, to pick a UUT as a
target and work on that. However, a critical part of the project is to expand that
by showing that it is relatively simple to add new UUTs of a particular class. It .
seems intuitive that we should be able to do that, but, it may not work out for a
variety of reasons. If that's the case, then we're simply writing test programs in a
different way rather than getting any boot-strapping effect. At this time, we
think that the boot-strapping effect will be there.

I'll give you the sales pitch for this--why Al for automatic test? From - S -

our standpoint, it has a very high payoff and we measure that payoff in terms of
economics. We spend a lot of money on testing and test programs, so it has a very
high economic payoff potential. It has the potential to reduce testing time, as the
testing of any particular UUT is done at least twice in the normal mode of
operation. We test once to fault diagnose, we replace the modules and then we
test again. A unit does not go back into service until it successfully completes
the test sequence. That means that even if you have just that one iteration, two
complete test times are required. When somebody said earlier it takes 2 hours to
test a unit, it's not just 2 hours--it's actually 4 hours. Some units don't retest as
"good," so there's another iteration. Thus, we're talking about large multiplier
effects on getting these things to work.

321

'= .. . . - . . . . m mm m . . . . .. . . - .. . . . . . . . .. .. . .. .. . . .. .



0

We think there's a great potential for getting better fault isolation.
That's not clear yet because we are stuck with the built-in test points. So it's not
clear that we can do better than a very good test programmer can do although 0
there is a good possibility that we can do better than the average test
programmer. This remains to be seen. We think the risk of complete success is
high but manageable due to the step-by-step approach planned. When I say it's
never been attempted, I mean it's never been attempted in a production
environment. We do have a target machine and target applications.

Our proposal is to transition this in a 4 to 5 year period into use with
ATE. Now I think that's a fairly ambitious thing to do. We're not just going to
demonstrate the concept, we'd like to have a product that can be transitioned into
service. We're going to take some theoretical shortcuts that others may not
strictly approve in order to improve efficiency. One problem with the whole
method is that you need a very large data base even to get started. For the first a
UUT, you need the whole generic data base, plus information for that class, plus
information for that specific one. The trouble is then, we're going to have a big
investment before we find out that it can't or can work. We're taking a chance,
but the risk-to-benefit ratio is very high and makes the risk worthwhile. A big
plus is that electronics is well defined and we know we have a target audience.
Success would be a true breakthrough in the way maintenance is done for the
Navy and for others as well.

The program will theoretically start in 1985, but in fact it's under way
right now with some background work and some baseline studies. To those not
familiar with government that seems like a very long time; to those who are - -

inside, this is a relatively short amount of time to begin a project. We've set
ourselves some specific milestones we're reasonably confident we can meet.
First, we'd like to demonstrate a functional KBS for at least one UUT by the end
of fiscal year 1986. We would like to add to that additional classes of UUTs and
demonstrate better-than-human capability for ambiguity reduction by the end of
the program. That's NAVAIR's program for intelligent automatic testing and I
will be glad to answer any questions anybody might have about that.

Comment: In the real world of developing test program sets for analog
modules, writing the program is not the painful part. The painful and expensive
part is designing the adapter that has to convert the limited capabilities of the
ATE to the peculiar requirements of the module. Once it's designed, the program
utilizes it and that's fine. When you go into interface and check out that program,
it is the circuitry and the adapter that causes the most cost.

Shumaker: There are always lots of ways to go wrong. For us, a test
program set consists of two parts: (1) an adapter that goes from the unit you
want to test to the ATE, which has a big patch panel, and (2) a program which
activates signal generators and measurement instruments and acts through that -

patch panel to talk to the unit. The adapter can be quite complicated. In fact, it
may be more complex than the thing it's testing. In other cases, it may be fairly
straightforward, just making the pins match up. The test program is a separate
issue. The adapter problem is a constant, regardless of test method. An
additional use of Al may be in interface fault diagnosis and maintenance of the
ATE itself.

322



We can't do anything about the interface, we're stuck with that. We
would hope that in future years, some more standardized way of attaching to the
outside world would be developed. For digital if you use a 1553 bus or some other
kind of bus, you may have hooks in the interior of the system and may be able to
eliminate many interface problems, but not all. The real world of military testing
is that we have things in service that are vacuum tube technology, discrete
transistors, small-scale integration, medium-scale integration, and, very shortly,
large-scale integration. All of those will continue to exist in parallel for a long
time, in the 20 year time frame. So anything we develop can't require re-doing
everything that we have already. We have to be able to accommodate a broad
range of technologies, and the present way of doing that is through these
adapters. We can start to plan for the future, and some people mentioned
Consolidated Support Systems (CSS) as one sort of plan. They can crank that in
for future generations. I feel this system is applicable to old ones through
generation of test programs and new ones through on-line diagnosis.
Unfortunately, we're not in a position to say, "Let's throw all this out and start
over again." It's just not a practical way to go.

Question: Do you have a measure for trying to test the program
productivity of the Navy, like how many lines are coded a day?

Shumaker: I don't have that, but if we had that figure, we probably
wouldn't tell anybody. Fred Liguori may have some comment on that.

Liguor: It varies a lot because complexity is the biggest multiplier, and
that can go from one to a hundred. We're getting paid by lines of code and it's
very easy to add lines of code. Efficiency sometimes causes you to turn out a -
higher price for code because you cut a lot of the garbage out.

Question: Yes, I know it's a poor method but it's the one that is used, as
you know. How are you going to measure improvement?

Shumaker: The way Pm going to measure improvement, as I have stated,
is that it takes less testing time when the thing runs, not more. If my measure
was that my knowledge-based system produces more lines of ATLAS than a

* manually generated one, then I could absolutely ensure that I'd succeed.

Initially, the measure that we're going to use is very crude, it says, "If a
manually generated generator costs three million dollars and I can do this for less
than three million, then this is a better way to do it." Or, "If it takes me t8
months turnaround at a given cost to get one and I can get one in I month
turnaround, then I also have an improvement"--either cost or time; we hope both.

I think we can improve both and that's how we're going to know. I'm
setting an initial performance goal for the program itself about equal to what
good test programs can produce. We can probably do better, especially since we
can modify these on the fly. Right now, when you get a test program, you are
stuck with it. If you want a better one, if it doesn't work up to the specifications,
you go back and you get another one written and you pay the same prices all over
again. Whereas with this sort of system, we'd have a lot more flexibility in

* improving it in a relatively short term. _

323

,o0



Comment: Another point that I would like to make is that one of our big
problems is assessing when the product is done. And, how good is that product?
It's a totally subjective thing right now. With a mechanized way, or at least -
semimechanized way, we know if the process is sound that the product will be 0
relatively sound. So our "policing" problem, which is quite large, could become
another cost saver.

Shumaker: You can tell that you're listening to an engineer instead of a
scientist-I think there's a distinction in approach. We're worried about pragmatic
things like costs and elapsed time. We're not worried about purity. If I have to
kludge this up to make it work better, I'll buy that as long as it, in fact, does work
better in the end. That kludge may or may not make contributions to the science
of Al, but that's not going to be important to us. What we hope to do is adapt
things to our application that will work. And, if we succeed, its going to be
wonderful for everybody else in getting funds because a lot of people will decide
this is a very good thing to do.

Comment: About 15 percent of the tasks related to program
development go to validation--not a trivial amount. And one of the reasons for
that is because of the subjectivity of the design. Once again, if you have a model
approach, a quasi-machine approach to producing a product, the validation itself -
should become a simpler task.

Shumaker: Notice that if you had one of these Al systems functioning,
and it could have access to the CAD/CAM data base, it could serve as a very
useful design tool. Right now somebody reads the manuals and writes a program
from it. The full range of raw data that are actually available are not used. With
this system, you could propose a particular design and see what sort of test - •
program and what sort of ambiguity levels resulted while there is still time to
make changes. With the present method, by the time we get it for test program,
the design is done. If we found a wonderful modification for the unit while
developing the test program, it would be impossible to get it in because it's too
late by that time. So, something like this system could serve as a very useful . ..
design tool and improve maintenance just by its ability to be used during design. - -

Question: You mentioned that you've done a cost benefit analysis and
traded off the costs vs. the payoff risk factor. Do you actually qualify that or
document it; is that a logical analysis?

Shumaker: It was not done in strict quantifiable terms. We spend -. -
$3 billion a year for support equipment and we said, "Spending a million a year to
save some of that is probably a good investment." We spend a tremendous amount
of money and we also know that we're starting to get into trouble keeping up with
changing technology. The old methods worked well when they were developed and
they still work. But today we have many more things to test and the technology is
outstripping us. When Very Large-Scale Integration (VLSI) starts getting into
equipment, we are going to be totally overloaded. We are being crushed right now
and we need a different approach to make this work. That's the reality that our
system is based on. I can only provide a qualitative answer, but considering the
amount of investment at present and the procurement budget, the ratio is very
high.

324



Question: Do you plan to give some of the tasks in this program to
industries?

Shumaker: The management plan is not yet complete. I view it as a
shared project between NAEC (they're in charge of automatic test equipment for
the Navy) and NRL which has the mandate for artificial intelligence. Each one of
them thinks that they are best qualified to do the whole job, but the truth is that
a combination of their special talents is needed. I believe that they are going to
need outside help to do it, there aren't enough people in those two places that can
work on this to cover the whole project in the time allotted. There will be many
industry opportunities. There is enough money and time tu do this job if we are
careful, but there's also not enough if we don't do it right.

Comment: I have a couple of questions about your host. You said you
wanted to capture expertise with a test programmer rather than a test diagnoser.
A priori, it seems to be an odd thing to do. I think the expertise of the test
programmer is much more sophisticated than that of the expert diagnostician.

Shumaker: Well, what I mean by that is there is a qualitative difference.
My initial target is not a diagnostician, but something that generates diagnostic
procedures. And this requires a different way of thinking about testing. If you
are sitting there with your instruments and testing a unit, you might do things
considerably differently than if you were writing a set of instructions for
somebody else to do the same troubleshooting. There is a different perspective
involved.

Question: But to write a set of instructions for someone else to do it is
much harder than having the procedure adapt as the measurements come on.
Wouldn't you like to have a fault drive the search? Otherwise you have to process
all possible faults.

Shumaker: That's correct, but to allow TPS generation to allow use of
existing equipment, that is the compromise we make. I think, and anyone is free
to contradict me, that the kind of product that can reliably generate on-line
diagnostics for general classes of things is a decade away at least and more likely
15 years or more, whereas something that can generate reasonable test programs
is probably a lot closer. I picked a target based on the philosophy that if I'm going
to get money long enough to make the ultimate thing work, I've got to show some
product in near term. Test programs are the product Ive chosen. This is not
going to be a delivered product in 5 years; it will be a demonstration of the
feasibility of producing such products. However, we are not locked in. We intend
to spend this year really getting to the details and may modify the approach. But
as it stands, it was sold on this particular approach.

Question: You said that there are already automatic procedures for I.
generating the test programs for digital?

Shumaker: Yes, digital systems are in some sense easy, at least with the
*kinds of systems that we have deployed now. What you do is get a gate equivalent
* for the whole thing, feed it to a program, and let it crank away overnight or for

325



- - .- i •

days generating test patterns which are designed to exercise all possible data
paths. If you put in this pattern, some predetermined pattern comes out the other
end. If not, the pattern gives an indication of the fault. I don't want to attack
the digital problem because the critics can say, "Well we are doing all right now, S
you are only projecting a problem." I predict that there will be a problem with
digital, too, once the number of gates exceeds some critical level. But the analog
is currently an unsolved problem and will work in any event, so it's a useful way to
go.

Comment: It seems to me that although the digital problem is obviously
a heck of a lot simpler, the fact that the digital problem has this economical
solution to it right off the bat shows that this approach is a good idea.

Shumaker: Digital systems are qualitatively different from analog. One
reason is that digital systems are deterministic, analog systems are not
necessarily so. Every component in the circuit could be out of tolerance and the
end to end performance still be within specification; the opposite can also be true.
So there is a qualitative difference that means you have to move to a different
level to isolate faults. The simulation methods pick a point and propagate the
errors to find faults. Well, if all the components are within 10 percent tolerance,
you don't get very far before all measurements become meaningless. You need to
think about it in a different way for practical size circuits.

I would now like to give you some perspective of some things I've heard
at this workshop. Pm very much open to dialogue and audience participation.
Some of these things are purposely meant to make you mad, make you yell at me.
It is my job to act as the intermediary between the people that carry out the work
and the people that have the money; nobody likes what you're doing. Making those
two sets of people match up is often difficult. You have to have a lot of
tolerance for long time delays--there's funding time and there's real time. For
example, a program that was sold last year doesn't start for another year. What
does one do in the meantime? Sometimes you have some seed money to put in,
but other times you'll be sitting and waiting while everybody else is, at least in
theory, getting ahead of you. .

I hear a lot of discussion about what is and isn't AL The consensus about
Al that I got from this workshop is that it's either too hard or it's SMOP. Does
anyone know what SMOP is? SMOP is "small matter of programming." A lot of
people say, "Here's my scheme, now all somebody has to do is write the software
for this, and you've got it made. I gave you all that you need to know." So there's
the concensus--it ranges from "This is impossibly difficult and I don't know how to
proceed" to "I've just given you the answer, all you have to do is put it together."

Another conclusion from what I've heard is that if something runs, it's
not AL Once you actually get it going, it's out of the realm; once the magic is
gone, it's no good. Also if it's not pure, it's not fun. That is if you have to go to _ S
mixed mode and heuristics, then it suddenly loses all its glamour and becomes an
uninteresting problem from a theoretical standpoint. This last point is something
that doesn't bother me, but that's because I'm "contaminated." I'll go for mixed
mode if I have to make it work.

326



Now, I'm not a licensed program manager, I got into that accidentally. I
am a licensed philosopher with a Ph.D., and I'm also a registered professional
engineer--which I don't ususally say around software people because it marks me.
I think that avionics maintenance is an excellent target project because values
and costs are very high. Sixty percent of the faults on aircraft are avionics, not
the air frame, not the propulsion, not tires. The avionics are the key to modern
weapon systems. Some aircraft have 30 million dollars of electronics on board.
Having to keep extra spares because the turnaround time is slow makes people
want to talk to me if I tell them I can do something about it. Present methods are
near the limits of their capability; that is, they work fine and were very good
choices at the time, but they're saturated and don't work well with either the 0
volume of the equipment we have or the complexity of the equipment we have

* now.

Equipment is now much more reliable; that is, the components are much
more reliable. However, we in the military have chosen to spend our reliability of
components to get more complexity, not to get system reliability. To take a very
crude example, an ARC-5 from the WWII era, a simple AM transceiver, had a
mean time to failure of maybe 50 to 100 hours. Well it's got five vacuum tubes in
it and we can fix it fairly fast. Now, I could build an ARC-5 using integrated
circuits that would have 100,000 hours mean time to failure. But I don't do that.
What do I do? I build a super, covert communication spread spectrum transceiver
that has much more capability, but a lower mean time to failure. That's how the
military has chosen to spend increased reliability of components and I see that
trend continuing. Very Large-Scale Integration (VLSI) with very high reliabilities
in components is not going to be spent to make existing radars or acoustic
processors more reliable; it's going to be spent to make even better ones that have
the same kind of failure rates that we have now within a factor of two or three.

I think the expert systems are mature enough to have a real chance to be
engineered in something. They're not ready for general use and have a lot of
faults, but I think the level of maturity is enough to let us do some practical
things. I see spin-offs of that, even though it's imperfect, having real live
experiment on real live things is going to give a lot of irformation to the theorists
and it's going to give us a lot of data that we might not otherwise get. If it works
we'll get more data than if it doesn't, but in the failing we'll also generate a lot of
information. So, it's a definite plus either way.

I also picked this area because Al has sex appeal. Most of the
practitioners, however, don't have sex appeal. When they go to sell a program
they don't fare well. There's a good reason for that, because you have to know - S
what the users want to use it for" and what their real problems are. If you say, 'In
25 years we'll have the optimum system," they'll say "See me in 24 years." I think
one thing the universities have not done well is know to whom they're selling.
They have a hard time relating to the actual problem. You need to research your
market the same way an industrial firm does. You can't pick your own problems
and then expect people to embrace it all the time. Sometimes you can hit it
lucky, but most of the time you won't.

In my case, I've said it will probably take 10 to 15 years for a fieldable,
practical, workable system. That's too long a time to sell a program, because

327



nobody's going to allow that amount of time without results. First of all, five
generations of military people are going to go through the Pentagon in that time,
and no individual manager wants, or can take, the responsibility for such a
decision. So you've got to have intermediate milestones that make sense. If you
want to maintain a high level of interest you have to have some tangible
spin-offs, even if they're dirty and even if you don't want to do it. And "interest" .
means "funding" in this context.

I'd be glad to entertain any discussion.

Comment: It seems like sort of the heart of the approach is the idea
that you can build a system that is general or has the plugs in it to make it
general. But it strikes me that the expert system work so far doesn't have any
success stories for general purpose anything.

Shumaker: Well, the ATE needs a lot of rules on how to use an ATE, so •
there's a generic aspect to whatever I plug in. How particular kinds of
components work--they work the same way whether in a power supply or an RF
amplifier or anything. Those kinds of general things will work the same. I
propose to describe these things in a block diagram sort of form for a high level
initial diagnosis and only go to descriptions of the nodes once we've got it isolated
to a general area. That's the same way a technician might do it. The functional -
description of an RF amplifier is going to be the same whether it is in a radar or
in a high frequency receiver or in anything else. Those are the generic things I
think will be transferrable.

Question: I think that makes a lot of sense, but my question is where in
the field of currently successful Al products is there anything like that? lip

Shumaker: I don't know that there are any. I don't think that this will
require an Al breakthrough. I suppose its an act of faith to say that we think that
the field is narrow enough and well enough known that a truly general purpose
system is not needed to achieve usable results. The success in the medical field
gives me confidence in that. Ninety percent of the facts about how the human
body operates aren't known, but 100 percent of what makes electronics operate is
known.

Comment: It strikes me that your analogy to the medical field fails
because you want a medical diagnostic system that you car come in with a reel of
magnetic tape and suddenly it knows how to diagnose diseases for Martians. You
want a system that you put in the description of a different widget and out comes
the automatic test programming.

Shumaker: Well, that would be the ultimate. I'm willing to hand code
for my initial examples. I think the generic base is going to have to be hand done,
the more specific class base is going to have to be hand done, and at least the _
first UUTs are going to have to be hand done. Ultimately, I'd like to see a
CAD/CAM data base produce the specific descriptions. I think that's perfectly
feasible. The kinds of things that I feel are necessary to build as rule base in the
data base are just exactly the things that are in the users' manual--block diagram,

328



functional description, schematics. And I think that if not automated ways, at
least convenient ways of coding that can be found.

Comment: For example, in an ATLAS program the preamble is the same
95 percent of the time regardless of what box you're talking about. So, you get
100 or 200 lines of code and there is no reason to start from zero every time.
There's the generality.

Shumaker: Our philosophy on this is that the test program is not going to
start from zero every time and say what should be done first. The way I envision
the actual product working is that some initial set of measurements to establish
some kind of initial data base will be done, and then we go into a "think mode," if
you want to look at it that way. Why should it start from zero every time?
Presumably there will be historical gain in these kinds of things, that is, once
we've tested a certain number of units, then we can get smarter in doing them.
The test programmers don't have that advantage, because generally they don't
have one of the actual products or a prototype to work from. Whereas we will be
able, theoretically at least, to update this as we go along.

Thank you.

329



ABOUT THE AUTHOR

Dr. Randall Shumaker is the NAVAIR Technology Manager
for maintenance technologies and flight deck equipment.
Currently he is a lecturer at George Washington University 0
in control systems, microcomputer applications and
software development. Dr. Shumaker holds a Ph.D. in
computer science from the University of Pennsylvania, and
an M.S. degree in electrical engineering.

330

0



ARTICIAL INTELLIGENCE APPLICATIONS TO AUTOMATIC TEST EQUIPMENT

Jerry L. Kunerto Naval Air Engineering Center0 / Lakehurst, New Jersey

Abstract

The Naval Air Engineering Center (NAEC) under the sponsorship of the
Naval Air Systems Command has initiated a program to develop and degrumrate
artificial intelligence (AD applications to automatic test equipment" (ATE) for
sharply improved Navy aircraft support operations. This paper will discuss the 6
NAEC Al program and why such a program was initiated. The Naval Air
Engineering Center acknowledges the technical support and gul ce from Dr.
Randall Shumaker (Naval Air Systems Command, AIR-310G) and the avy Center
for Applied Research in Artificial Intelligence.

Describing the Need

The maintenance of Navy aircraft weapon systems is of vital importance
to the Navy. Modern and future Navy aircraft depend heavily upon weapon
systems for a wide variety of successful missions. Aircraft weapon systems are
continuously incorporating new technologies and have proliferated and grown in -
complexity of performance and structure. However, these systems are only of use
when they are available and functioning properly. Maintaining these systems is
also an increasingly difficult problem due to the increasing complexities of the
systems themselves, and to personnel problems such as severe shortage of
qualified personnel, low operation skill levels, and low educational levels. It is
quite apparent that fault diagnosis and repair of aircraft weapon systems are
becoming serious and increasing operational readiness problems.

Temporary Relief

Presently, automatic test equipment is playing a major role in the Navy's
maintenance program for operational readiness of its aircraft. A typical ATE
system is comprised of a test operator, an automatic test system (ATS), a test
program set (TPS), and the unit-under-test (UUT). ATE is designed to analyze
UUT behavior in a variety of ways, but with a minimal number of tests. Ideally,
ATE performs these tasks with minimum dependence on and in smooth interaction
with the test operator; or as defined by MIL-STD-1309B, dated 30 May 1975:

"Equipment that is designed to conduct analysis of functional
or static parameters to evaluate the degree of performance
degradation and may be designed to perform fault isolation of
unit malfunctions. The decision making, control, or
evaluation of functions are conducted with minimum reliance
on human intervention."

331



In terms of utopia ATE, the test system should be such where the test-
operator simply hooks the UUT up to the test system, pushes a start button, then
sits back and watches the ATE perform UUT behavioral analysis.

However, ATE has encountered many obstacles hampering full aircraft
weapon systems support in the Navy's maintenance program. Many of these
obstacles involve reasoning in the design of the hardware or software, or in the 0
operation of ATE itself. The hardware and software or technical problems are
grouped into two categories:

1. The development of ATS to support a wide variety of
UUTs whose complexity is rapidly growing.

2. The development of TPSs with sufficient insight to
provide diagnostic capability for all conceivable field
failures.

The operational problems of ATE can be divided into two major ....
subdivisions of management and personnel. The management problems are related
to workload characteristics and inefficient real time reporting of maintenance
problems. The major personnel problems faced by the Navy maintenance program
are:

I. A decreasing educational level of ATE operators in view
of the continuous growth of weapon systems and ATE
complexities.

2. A high turnover rate among Navy personnel resulting in a
nearly impossible training situation in which
inexperienced operators are being employed to replace
skilled operators.

Fault diagnosis in ATE is driven by a TPS which takes weeks, months, or
even years to become fully developed and critically lags the deployed UUT it
supports. Although the Navy developed ATE with horizontal functional support as
a goal, each specific type of UUT requires its own TPS which ranges in cost from
$10K to $3M (nonrecursive costs). Surprisingly, the costs of TPSs are the primary . 6 _

drivers for the extravagant costs of ATE systems. Another note related to this
matter, most ATE systems have reached full capacity loads of TPSs but have yet
to complete horizontal support! A final physical-related problem of TPSs is the
length of test time; the test time for a typical ATE system ranges from 10
minutes to 2 hours, and the run is repeated until redundant results are obtained.
Generally, the isolated fault is an ambiguous group of components due to variable
results obtained during the test runs.

An "open loop" approach is the method used in conventional TPSs; that
is, the test operator does not know how to interpret abnormalities, programs, or
hardware failure. Before a TPS is developed by a programmer, he prepares a fully
explicit logic tree which provides a flow chart analysis of the test procedures. -
However, most logic trees are very deterministic where all of the decisions are

332
;- --

" " t- il " : . . . " " L .. . I I - I -il .. I l J II . . . .. • . . .A



either two state (Yes or No) or final; and they do not provide rational explanations 0
to the test operator as to why such a decision was made or what the programmer's
reasoning was. It is apparent that the programmer assumes that the test operator
can deduce such facts from the logic trees; however, due to lack of
documentation, these facts become implicitly lost in the logic trees.

These ATE problems have created an urgent need in the Navy to
investigate and develop new technological approaches which will sharply improve
ATE aircraft support operations for today's ATE and future generations of ATE.

A Proposed Technology

A review of the problems associated with ATE support operations shows
a need to capture the knowledge of expert level test operators and TPS developers
in some sort of medium which will transfer the knowledge to Navy maintenance
personnel. Artificial intelligence technologies are capable of fulfilling such a
need. Artificial intelligence provides both a development methodology and a set
of implementation techniques appropriate for addressing complex problem areas, -
especially those beyond the reach of conventional methods. Any ATE benefitting
from the application of AT technologies would become versatile, more flexible to
adapt to unanticipated events, and would provide more effective guidance to the
test operator.

Artificial intelligence is a new generation of computer science, although
it is 25 years old, that is rapidly growing in interdisciplinary interest and practical
importance to the Navy as well as industry. Al is concerned with the development
of intelligent computer systems; that is, computer systems that exhibit the
characteristics we associate with intelligence in human behavior. Within most
scientific disciplines there are several distinct areas of research, each with its
own specific interests, research techniques, and terminology. In Al, these
specifications include research on language understanding, vision systems,
problem solving, Al tools and programming languages, automatic programming,
and several others. Many artificial intelligence researchers believe that insights
into the nature of the mind can be gained by studying the operation of such
programs. Whether or not they lead to a better understanding of the mind, there
is every evidence that these developments will lead to a new, intelligent 0 ...
technology that may have dramatic effects on our society. Experimental Al
systems have already generated interest and enthusiasm in industry and are being
developed commercially. These experimental systems include programs that:

1. solve some complex problems in chemistry, biology,

geology, engineering, and medicine at human expert
levels of performance;

2. manipulate robotic devices to perform some useful
repetitive, sensory motor task;

3. answer questions paced in simple dialects of English. 0

333
_9



O

However, doing arithmetic or learning the capitals of all the countries of 0
the world are certainly activities that indicate intelligence in humans. Can it be
said that a computer that performs, these tasks knows or understands anything?
This philosophical point has been through many discussions. Although some
activities other than numerical calculation and information retrieval have been
accomplished by programs, many key thought processes, like recognizing people's
faces and reasoning by analogy are still puzzles. These are performed so •
subconsciously by people that adequate computational mechanisms have not been
postulated for them.

Like the different subfields of artificial intelligence, the different
behaviors discussed are not all independent. Separating them out is just a
convenient way of indicating what current Al programs can do and what they
cannot do. Most Al research projects are concerned with many, if not all, of
these aspects of intelligence. Here are a few of these different subfields of AL

Knowledge-Based Systems, also referred to as expert
systems, have produced a very general architecture for
representing various kinds of knowledge, explicitly, and - 0
interpreting this knowledge as needed to perform useful work
and explain its processing steps.

Automatic Theorem Proving is a mature body of knowledge
for formally deducing facts and theorems from more --- .
primitive quantities which model aspects of interest in the
application domain.

Automatic Programming is concerned with producing
executable computer programs directly from requirements
specifications, instead of higher level procedural
specifications.

Game Playing and Heuristic Speech are perhaps the oldest
subfields and have studied problem solving in simple but well-
defined game contexts and developed many problem solving
and search strategies now used in various AI subfields.

Machine Vision focuses on the difficult task of automatically
interpreting sensor-produced images using computers.

Information Representation and Processing is the empirical
study of representing and processing all forms of information
by natural and artificial systems. -

Robotics is concerned with integrating high-level planning
and perception capabilities into mobile, electro-mechanical
implementations capable of physically interacting with the
natural environment.

Natural Language Processing seeks to provide computers with
the ability to communicate with users directly in natural
human languages.

334 _ _

.0



There has ueen much activity and progress in the 25 year history of
artificial intelligence. And there is more activity now than ever. Al is a
relatively well funded discipline, principally in the United States, by the Defense 0
Advanced Research Projects Agency (DARPA) and other government activities.
There are active Al research groups in other countries, including Japan, Canada,
Britain, France, Germany, Australia, Italy, and the USSR. Increasing research
support is coming from the private sector where interest in using and marketing
Al programs is on the rise. The real shortage is people; there are only a few Al
research groups in universities and corporate laboratories; in terms of the number S
of people involved, the field is quite small.

Knowledge-Based Systems

Knowledge-based systems (KBS) have presented the highest potentials S
for AI applications to ATE due to their unique abilities. KBS are a subfield of Al
directed towards specific problem domains such as maintenance through the
logical application of rules developed by experienced personnel and stored in a
special data base. KBS are composed of a collection of rules called the rule base,
a collection of facts called the knowledge base, and an executable program called
the inference engine. The rule base is what gives KBS the ability to make .W
decisions and recommend actions. Rules are of the form:

IF SITUATION I EXISTS,
THEN PERFORM ACTION A

Hence, the rules are referred to as situation-action pairs. .0

The inference engine's program is basically a search and pattern match.
It scans the rules in an efficient way, searching for a rule whose premise (the IF
part) matches the current state or facts from the knowledge base under
consideration. If a match is found, the consequent (the THEN part) is executed.
The actions can be anything from manipulating the knowledge base on the rule - .
base itself, to querying or advising the user.

A description of the MYCIN system can provide a clearer picture of KBS
and can provide an insight to one of NAEC's proposed Al applications an
intelligent test generator for Navy avionics. The MYCIN system was developed
by Stanford University to provide consultative advice on diagnosis and selection of 0
therapy for patients with infectious diseases. It conducts an interactive dialogue
with a physician to collect information or facts from which it infers the diagnosis
and selects an appropriate therapy. Besides being capable of explaining its
reasoning to the physician, MYCIN employs a knowledge acquisition subsystem
which helps physicians expand or modify the rule base.

The medical knowledge, or rule base, in MYCIN contains several hundred

production rules (IF-THEN format) representing human expert level knowledge
about the domain. The IF part of the rule, called the premise or the lefthand side,
states the conditions that must be present for the production to be applicable; and
the THEN part, called the action part or the righthand side, is the appropriate

335

i0
is _ _ _ _ _ _ _ _ _ _ _ _ _



-. A

action to take. During the execution of the production system, a production
whose premise is satisfied can fire or have its action part executed by the
inference engine.

The knowledge base, or collection of facts, data, or short-term memory
buffer, is the focus of attention of the production rules. The premise of each
production in the rule base represents a condition that must be present in the
knowlede base before the production can fire. The actions of the rules can change
the knowledge base, so that other rules will have their premises satisfied. The

*knowledge base structure may be a simple list, a very large array, or more
typically, a medium sized buffer with some internal structure of its own. In the
MYCIN case, the knowledge base is constructed by acquiring a patient's record
files and queries to the physician for information or facts describing the
conditions or sympotms of the infectious disease.

The mechanism used to draw conclusions based on the rules in the rule
base and the data for the current case is the system's reasoning process or
inference engine. In the MYCIN system, rates are involved in a backward
chaining fashion that results in an exhaustive depth-first search. Backward
chaining, also referred to as goal driven, expectation driven, or top-down thinking,
requires looking at the action parts of the rules to find out what conditions would S
make them fire, then finding other rules whose action parts conclude these
conditions, and so on. In other words, the inference engine starts from a goal of
what is to happen and works backwards, looking for evidence that supports or
contradicts the hunch.

The representation of knowledge as production rules and the ability to .
explain specific rules allow MYCIN to interact with the physician in a manner
that permits the system to acquire and apply new knowledge. When a physician is

- dissatisfied with the system's performance on a particular case, MYCIN is able to
explain how it made the erroneous conclusions and to guide the physiciai, while he
is determining the source of reasoning; the physician elects to enter new rules or
alter existing rules. He enters his requests through a nearly natural language S
interface. Once this new rule or alteration is accepted and understood by the
system, the next consultation will make use of it and alter its recommendations
accordingly. This ability permits the system to interact directly with the domain
personnel without intervention of the programmer.

KBS Versus Algorithm-Based Systems

Prior to the availability of knowledge-based systems, the only way to
represent and organize knowledge was through the use of algorithm-based
systems. These systems possess the following characteristics:

I. Deterministic and do not have redundancy.

2. Sharp distinction between code and data.

3. Opaque algorithms, thus difficult to modify or analyze.

336



p0

4. Lack the ability to reason about or explain the
techniques and mechanism that they employ.

Knowledge-based systems are a body of knowledge and simple
mechanisms for applying knowledge whenever possible and useful. This feature is
possible due to the rules that make up the rule set. KBS are applied to problem
areas that rely on the judgment of human experts; in other words, where problems
are complex and require the application of high-level rules that are judgments and
evaluations of solutions. In contrast to algorithm-based systems, KBS have the
following characteristics:

I. Knowledge is redundant, so the absence of one fact does
not necessarily prevent the system from arriving at a
result by another route.

2. A sharp distinction exists between the body of knowledge
and inference engine.

3. Transparent algorithms with independent rules which
allows for modifications and analysis.

4. Provision of explanations to describe the reasoning path -

used to arrive at a given goal.

Many problems are amenable to algorithm-based systems, but many are
not; those that are not require experts to evaluate and assess situations, then
make judgments based on those assessments. The selection of KBS over
algorithm-based systems is basically a tradeoff between the ease of modification 0
and intelligibility offered by the former, and the fast execution speed and low
data base space requirements offered by the latter.

Potential KBS Applications to ATE

The application of knowledge-based systems can close the "open loop"
test approach by developing input/output dialogue with the system user. The
development of such an application would be similar to the interactive dialogue
used in the MYCIN system. The following features are proposed from such an
application of knowledge-based systems:

1. Has the capability of explaining its actions and reasoning
processes with respect to an interaction with the user or
to a solution it produces.

2. Has the capability to acquire new knowledge, modify
existing knowledge, and expunge erroneous or useless
knowledge.

Another application of KBS is for fault diagnosis of UUTs. First, the
knowledge-based system determines what tests need to be performed and
instructs the ATE or user to execute the tests. The fault diagnosis procedure is

337



-7o

fired by developing a set of facts which describes what the system knows about
the UUT. This set of facts are composed of:

1. Facts that describe the UUT and its problems or 0

systems. The facts are acquired by the KBS, producing a
sequence of queries to the test system or user.

2. An auxiliary facts table that provides finer details or
specific details describing the UUT such as operational -
specifications, components, failure history, and failure ,
propensity.

Next, the knowledge-based system transfers the set of facts to its
knowledge base to develop a preliminary list of tests to be performed. Residing in
the knowledge base is a set of rules that were experimentally verified facts of the
UUT. The rules are segregated into smaller subsets according to their required .
tests or as more commonly known, their hypotheses. This structure will aid in
establishing a depth-first search strategy. Finally, the KBS associates the initial
facts to the relevant subsets from the knowledge base and associated hypotheses.

Now, the KBS instructs the ATE to execute the tests while maintaining
interactive dialogue, thereby replacing the traditional ATE software that runs a --
battery of brute force exhaustive tests. Test evaluation would be accomplished
by embodying the knowledge of expert diagnosticians. The KBS would evaluate
the test results and either determine the problem directly, and the need for
additional tests which would likewise be performed and evaluated, or supply its
conclusion in near natural human language to the system user.

Conclusion

It is quite apparent that knowlege-based systems propose broad
applicability in test program generations. Already, the following capabilities have • -
been shown to be available from the KBS approach of test program generation:

1. No explicit logic tree is required in advance as with the
traditional TPS approach. The logic tree is expanded
(tests plus paths generated) as needed.

2. The rules are in the production rule format which imbed .. _
knowledge about what to do.

3. The KBS approach can reach a conclusion under
uncertainty and when it encounters bad, ambiguous, or
corrupted data. ._ _

4. By means of continuous interactive dialogue with the
test operator or ATE, the KBS approach can improve its
own

338



S

performance or expand by adding rules to the logic tree
(e.g., this eliminates the need for software rewrite and
ATE software center modifications).

5. The KBS reasoning for obtaining a diagnosis is not lost in
the generation process due to KBS ability to provide a
rational explanation to the test operator. -.

However, the Naval Air Engineering Center acknowledges the fact that
it is undertaking a high risk project but one that is tenable. The following key -

points support such a declaration:

1. The KBS approach has never been attempted.

2. The initial knowledge base needed is large.

3. The electronics field is sufficiently well defined to make
success possible in reasonable time.

And should success prevail, a breakthrough in electronics (analog, digital,
and hyrid) maintenance would become inevitable. - .

REFERENCES .

Avron Barr & Edward A. Feigenbaum, The Handbook of Artificial Intelligence,

Volume I and II, William Kaufman, Inc., 1982.

Anthony Coppola & Lorraine M. Gozzo, "Artificial Intelligence Applications to
Testability," Proc. of AUTOTESCON '82, pp. 138-142.

Jerry Kunert, "ATE Applications of Artificial Intelligence," Proc. of
AUTOTESTCON '82, pp. 84-87.

Nits 3. Nilsson, Principles of Artificial Intelligence, Tioga Publishing Company,
1980.

339



t -

ABOUT THE AUTHOR

Mr. Jerry L. Kunert is currently the Senior Project
Engineer for computer-aided maintenance aids in Navy
aircraft support operations at the Naval Air Engineering S
Center, Lakehurst, New Jersey. He is chair of the IEEE
Automatic Test Program Generation Subcommittee. He
has made presentations on artificial intelligence
applications at AUTOTESTCON 81, 82, 83 and the IEEE Al-
Fault Tolerance Workshop. Mr. Kunert received a B.S. in .
electronics engineering from Monmouth College.

340

S" , •

-- 'I

t0

340



Model-Based Probabilistic Reasoning for Electronics Troubleshooting

Richard R. Cantone

0 Navy Center for Applied Research
in Artificial Intelligencea.U.S. Naval Research Laboratory - Code 7510

Washington. DC 20375

ABSTRACT

The Navy Al. Center is currently developing a series of increasingly
sophisticated expert consultant systems for guiding a novice techni-
cian through each step of an electronics troubleshooting session. One
of the goals is to automatically produce, given a set of initial symp-
toms, a binary (pas/fail) decision tree of testpoints to be checked by
the technician. This paper discusses our initial approach using a
modified game tree search technique, the gamma miniaveraye
method. One of the parameters which guides this search technique -
the cost of each test - is stored a priori. The two other parameters
that guide it - the conditional probability of test outcomes and the
proximity to a solution - are provided by a dynamic model of an expert
troubleshooter's beliefs about what in the device is good and what is
bad. This model of beliefs is updated using probabilistic 4test-resvit ,'- ;, * e
pLausible-conseqauences' -rules. These rules are either provided by. an
expert technician, or approximated by a model-guided Ruie Generator.
The model that guides the generation-of rules is a simple block " - -. "
diagram of the Unit Under Test '(UUT) augmented with component
failure rates.

1. Introduction
The Navy A.l. Center is currently developing a series of increasingly sophis-

ticated expert consultant systems for guiding novice technicians through each
step of an electronics trouble-shooting session. This paper describes the
current, Mark I implementation. The basic design of this implementation grew
out of a series of preliminary conversations with our domain expert - a master
technician. Using a Tektronix Model 465 oscilloscope as a potential Unit Under
Test (UUT) for particular examples, these discussions focused on the general
types of information used in troubleshooting electronic equipment. To achieve
an implementation in a reasonable amount of time, we chose for inclusion a
proper yet important subset, namely:

Used by permission of International Joint Conferences on
Artificial Intelligence, Inc.; copies of the Proceedings are available
from William Kaufman, Inc., 95 First Street, Los Altos, CA 94022, USA.

341



0

A Priori:
- circuit topology
- cost of individual tests
- relative component failure rates
- component replacement costs

A PosteriorL:
- conditional probability of test results
- proximity to a solution

In the remainder of this introduction (Section 1) we describe their importance
in electronics troubleshooting, and briefly how they have been incorporated in .

the current implementation. The final section (Section 4) of this paper briefly
discusses how other important types of information (e.g.. component function) S
could be added to the current system. The body of this paper (Sections 2 and 3)
describes in detail the current system - a novel application of heuristic search
guided by a rule-based reasoning component that makes use of both traditional,
expert-supplied rules and rules approximated by a novel, model-guided Rule
Generator.

In principle, a technician can isolate the faulty components of an electronic . .
device with an exhaustive search by testing every discrete, low level component
(e.g., resistor or transistor.) This simple linear search can find all faults and in
fact is often done when there are relatively few components to test. When there
are a great many discrete components, the technician can take advantage of the
hierarchical organization that designers generally impose upon complex and
sophisticated circuit . In this tree-like organization the top-most branches - .
represent the major subsystems, such as the power supply, while the bottom
leaves represent the discrete components, such as the individual resistors and
transistors. This organization of the search space permits the technician to
consider, at each level of abstraction, relatively few components. The system,
as well as others (e.g., [Davis, 1982b] and [Genesereth 1982]), attempts to
mimic the troubleshooter by starting the search for faults at the top of the com-
ponent hierarchy, and then slowly moving down to lower and lower levels.

At each level in this abstraction hierarchy tree the troubleshooter must
decide where to test first, and then based on the outcome of that test, where to
test next, etc. In the computer programs that guide Automatic Test Equipment
(ATE) these decisions are stored in a binary (pass/fail) decision tree. Each
node in the decision tree represents the best test to make next, given the test
outcomes represented by the arcs which lead to it from the root node. The root
node represents the initial symptoms. This is similar to the decision trees pro-
duced by artificial intelligence game tree search algorithms, such as the A* algo-
rithm and the alpha-beta minimax algorithm (see [Nilsson, 1980] for an excel-
lent discussion of these algorithms.) In these decision trees each node
represents the best move for a player to make next. The arcs which lead to AL
each node represent his opponent's responses to his earlier moves.

The A* algorithm can find an solution tree which is optimal (in cost) for
and/or trees, but requires a depth-first search to termination (eg., by looking
ahead until a faulty component is found.) When there are many possible tests in
a circuit (or many possible moves in a game) the A* algorithm can be impracti-
cal* and a shallow, suboptimal search strategy may be required. The Alpha-beta

* Even in this case, where there are only two branches at each "and"
node (i.e., pass/fail), it has in fact been s own that the general problem
of finding an optimal solution tree is NP-hard (see 'Hyafll and Rivcst,
1976] and also (Loveland, 1979].)

342



minimra method can allow this to be done efficiently, yet the alpha-beta method 0
does not take into account the cost of each test. While the cost of moves in a
game may be inconsequential, the cost of a test in troubleshooting can be cru-
cial.

Still another problem with using any minimax method for this application is -

the built-in assumption that the "and" branches in the and/or search space are
decided by an opponent. In physical systems, such as electronic devices, the
"and" branches are governed by nature, or chance, and can be estimated using
conditional probabilities. This observation by Slagle and Lee motivated their
creation of the gamma miiaverage method [Slagle and Lee, 1971]. In the
miniaverage method, the backed-up value of an "and" branch is not a maximum,
but a weighted average - weighted by the conditional probabilities associated
with each branch. It allows for efficient pruning of the search space with cut-
offs. similar to alpha-beta cut-offs, called gamma cut-offs. The method can also
allow for termination of the search when the expected cost of continuing the
search exceeds the cost of simply replacing the suspect components.

While the cost of each test can often be estimated a priori, two other
parameters that guide the gamma rniniaverage method - the conditional proba-
bility of a test outcome, discussed above, and a static evaluation function, which -.

estimates the proximity to a solution - are based on the results of earlier tests.
Even with only 2 possible outcomes (i.e., pass/fail) for a test, for n possible -

tests there may be as many as 3" possible combinations to consider (since each ' -.

test could either pass, fail, or not be made.) Rather than require that values for -<
these two parameters be established a priori for all possible combinations of . -

test results, the system estimates these values through rule-based simulation.

Figure 1 shows the overall structure of the rule-based reasoning com-
ponent, which is the heart of the system. Test results, real or hypothetical, are
introduced one at a time to the Inference Engine. Given a test result, the Infer-
ence Engine uses a single, triggered rule to update a dynamic, a posteriori
model of an expert technician's beliefs about what in the UUT could be bad and
what should be good.

Generator " [.Model of UUT

_. i, Rule Bass

A Posterion Probabil- _

Fgure 1: Rule-Based Reasoning _ _ _

343

: . . . . . . . .



In the traditional expert systems approach, the rules used to update these
beliefs would come from a stored, a priori collection of expert-supplied symp- 0
torn - possible-cause rules. Randall Davis [1982a, 1982b] has pointed out that
the task of extracting a separate rule from the expert for every conceivable
symptom that might arise in a sophisticated piece of electronics equipment is
unrealistic. Because of this, Davis stresses the importance of an alternative
means with which to reason - a model of the system being diagnosed. Davis'. .
argues that expert systems should have both compiled rules (which he calls 0
"compiled experience") and the ability to reason from a model. The system
incorporates these two knowledge sources through its small expert-supplied,
device-specific a priori rulebase, and a model-guided, device-independent Rule . -

G',wrat or.
The Rule Generator can dynamically produce rules, with the same syntax as

the compiled rules, by consulting an a priori model of the UUT. The model of .
the UUT that has been implemented, thus far, is an augmented block diagram* -
augmented in the sense that it contains such non-traditional information as
component failure rates. Although the rules that the system generates from its
model may be less accurate than expert-supplied rules, the generated rules can
fill in whatever gaps exist in the expert-supplied rulebase, and then only when '. "
needed. The motivation for this design was a statement by our domain expert . .
that in troubleshooting any sophisticated piece of electronic equipment, includ-
ing equipment with which he is very familiar, a set of block/schematic diagrams
is indispensible. He also says that given a good set of such diagrams he can
troubleshoot essentially any piece of analog electronics. The Rule Generator
tries to capture this generality by producing approximations of the rules which
normally make up "compiled experience." ..

The rules in the system, both compiled and generated, are p.-obabilistic (or,
more properly, evidential) rules of belief. Each rule is triggered by a single test
result. The consequences of each rule are probabilistic assignments of guilt or -

innocence, given this one particular finding, to various components and lines in
the UUT. These probabilistic assignments are used by the system's inference
engine to update the system's a posteriori model of beliefs about what in the S
UUT is good and what is bad. Since the system does not make use of a "single
faul't assumption" that at most one of the UUT's components is faulty, for each
component and line the system gathers both evidence that is it good and evi-
dence that it is bad. And, because of the uncertainty inherent with approxi-
mated probabilities, the probabilities associated with these two mutually
exclusive possibilities may not necessarily sum to 1. The system combines evi-
dence from separate, independent sources (i.e., test results) using Dempster's
Rule [Shafer, 1976]. Dempster's Rule does allow for a sum less than 1, yet
reduces to the traditional Bayesian approach when the sum is exactly 1.

Dempster's Rule works fine for combining evidence from sources that are
independent. But because of circuit connectivity, test results are not always
independent. In the system, non-independent test results are defined as those
that are taken from a common path in the UUT circuitry. The interpretation
assigned by the inference engine given two non-independent results depends
upon whether the tests passed or failed and upon which result is upstream or
downstream from the other. For example, if two non-independent results are

0 Fault isolation and testability analysis based upon block diagrams has
come to be known as logic rodeling or logic model anatysis. One notable
example of this is the STAMP system [Simpson and Ballban., 1982J which
makes use of information theory to generate, in a proprietary manner,
binary decision trees of the type generated by the N RL system.

344
.. . .



both bad (good). then only the more useful - the upstream (downstream) result -
is retained and interpreted by the inference engine. As another example, when 0
one passed test result later clears away the blame from some component -

assigned as a result of an earlier failed test result - that blame is removed from
the component and the original failed test result is re-interpreted in light of this
new information. This form of non-monotonicity has been implemented using
the basic truth maintenance facility in the electronics simulation system EL
[Stallman and Sussman, 1979]. 0

The current system is made up of two basic components. Section 2 of this . -

paper discusses the probabilistic rule-based reasoning component that guides
the heuristic search component discussed in Section 3. Section 4 is a discussion
of future plans.

2. Ptobabilistic Rule-Based Reasoning S

The rules in the system incorporate probabilistic measures of belief. Pro-
babilistic measures of belief, or certainty factors, have played an important role
in such successful rule-based expert consultant systems as I.YCIN [Shortliffe,
1976] and PROSPECTOR [Duda et.al., 1979]. The expert consultant system for
electronics fault isolation ARBY [McDermott, D. and Brooks, R., 1982] totals
"amounts" of evidence for and against hypotheses, but since these "amounts"
are not related to probabilities, it does so in a very ad hoc manner [Brooks, R.,
1982].

Probabilistic measures of belief can play an important role in troubleshoot-
-' ing electronic devices. For example, consider the simple circuit depicted by

Figure 2,

c, .S.

Figure 2

where it is known, through testing, that the input is good and that both outputs
are bad. One explanation for these test results could be that both components
C2 and Ca are faulty. While this is possible, and should not be ruled out, the pos-
sibility that C, is broken is much more probable.

Also, consider the slightly different circuit depicted by Figure 3, where it is
known that the input of C is good, the output of CR is bad, and the output of Ca
is good. Since the output of C3 is good, its input must be good, which also means
that one of the outputs of C is good. This give some evidence that C, is good. (It
it were known that both of the outputs of C, are good then we could be -om-
pletely certain that C, is good.) So, in this case, C is slightly less suspect than
C2, since there is some evidence that C1 is good while there is none at all that C2  -_AIL

is good.

345



0

Figure 3

2.1. The Inference Rules

In expert consultant systems, relative measures of belief, such as those dis-
cussed above, have been quantized using antecedent -o plausible-consequences
rules. In the system there are two types of rules - rules for passed tests and
rules for failed tests. Also, each rule has two parts - one suggests consequences
about components, while the other suggests consequences about other test-
points in the circuit. The basic syntax of the rules is described using the follow-
ing rule schemata:

Rule-la If there is evidence with probability x that an output of a com-
ponent is bad*, then if there are n components which could have
caused this bad output, then for each such component there is

evidence (with probability -) that this component is broken.

Rule-lb For each input I of each of the n components indicated by Rule-
la, if m of these n components feed line I, then there is evidence
(with probability : that I is bad.

n0
Rule-.a If there is evidence with probability xt that output O of a com-

ponent with n outputs is good, then for each line that feeds this
component, through some path, there is evidence (with probabil-

ity -) that this line is good.
t= Ln

Rule-2b If there is evidence with probability xt that output O of a com-
ponent with n outputs is good, then there is evidence (with proba-

bility 3 - that this component is good.
t=l~nn

These schemata have actually been used by our domain expert as a guide for
writing device-specific rules for the Tektronix 465 Oscilloscope, with the proba-
bilities in parentheses merely suggestions.

Rather than requiring that domain expert provide the system with such
rules for every one of perhaps thousands of test-points in a UUT, the system's
Rule Ceneratfr can approximate missing rules using information stored in the
system's a priori model of the UUT. If information is missing from the model,

i Here, a "bad" input or output line just means that the signal on the line
is not the same as when the entire UUT is good.

346



- . - . E .I III. .11 1 .-.-. •

the Rule Generator will use the probabilities within the parentheses in the sche-
mata above as defaults. The types of information presently stored in the a S
priori model of the UUT and used by the Rule Generator are: the circuit struc-
ture (e.g., topology), sub-structure, and relative component failure rates. For
example, the Rule Generator can approximate a Rule-la rule by making use of
information about:

o Topology: The grossest estimate of n is the total number of corn- S
ponents in the entire circuit. This can be cut down significantly, using
simple signal tracing, by considering only those components that lie
upstream from the bad output.

o Component Failure Rates: The probability _- is a default probability.

The failure rate of each component is used as a weighting factor. For , 6
example, if one of the n components has exactly twice the failure rate
of each of the other n-i components then the probability of the evi-

dence assigned to it would be - and - for each of the others.
n+1 n

The Rule Generator can custom tailor a Rule-2b rule using information about:

o Component Sub-Structure: Some of the outputs of a component could
be more informative than others. For example, output i may be
affected by 90% of the component's internal sub-components. By mak-
ing use of such information, the probability assigned is a weighted
average rather than a simple average. .

2.2. The Inference Engine
All the rules are triggered by a test result. When a new test result is

entered into the system, the inference engine first looks in the small rulebase,
which comprises compiled experience, for a rule that is appropriate. If there is
none, it will call upon the Rule Generator to generate one. With either the .
retrieved or generated rule, the inference engine can then update the a pos-
teriori model of beliefs about what in the UUT is good and what is bad.

In updating the model of beliefs, there are two cases that the inference
engine must consider. The new test result could either contribute new indepen-
dent evidence that should be combined with earlier evidence; or it could provide
new information upon which earlier plausible inferences should be revised. _ .

Combining New Independent Evidence

At any point in time, we may have evidence, say for a particular component
C, that indicates with probability x, that C is good and I/i that C is bad. Since
exact values for x, and yj are difficult or impossible to calculate, x, and yj are
simply estimated lower bounds on the true, Bayesian probabilities (i.e., ---

zK= 1- (xI+y 1 ) may be greater than 0.)
When a new piece of independent evidence is introduced concerning C, the

new evidence can be combined with the old evidence using Dcmpster's Rule
[Schafer, 1976].* For example, suppose that new evidence suggests, with

One notable use of Dempster's Rule has been by Garvey ror integrating _
sensor information [Garvey, 1981]. It has also influenced Friedman's Ex-
tended Plausible Reasoning [Friedman, 1981].

347

.1
-~~ 1



•" i

probability X2 , merely that C is good. The uncertainty z2 associated with this
evidence is simply 1- z 2 (since, in this case, Ys =0.) According to Dempster's
Rule, the updated probabilities z (good), ya (bad), and z3 would then be com-
puted as follows. First, using a cross product, let:

X'e S X2".I + X2'Zl + Z2 "Xl

Y/'S =Z2s'Y1

Z's - IZ

Nv =(x'8 +1/'5 +z' 5) -l

and then, through re-normalization:

Zs =NZ's

There are similar equations for combining new evidence that C is bad.
For example, suppose that at some moment the total probability that com-

ponent C is good is x, =1/3 and yl=/3 that C is bad (with z 1=1/3.) If new evi-
dence is introduced with certainty x 2=1/3 that C is good (and with z 2 =Zo3),
then the updated probabilities would be x3= 1/2 that C is good and Y3= 1/4 that
C is bad (with z3=1/4.)

The associativity and commutativity of Dempster's Rule are very important ......
in this application since the results of independent tests should be independent
of the order in which the tests were made. The Rule's sound treatment of uncer-
tainty is also important here, since in troubleshooting exact probabilities are
often difficult or impossible to calculate.

Revising Earlier Plausible Inferences ("Shifting Blame")

Inferences made earlier in a troubleshooting session might need to be re-
evaluated in light of new information. For example, Rule-!a rules distribute the
blame for a fault among n components. If m (for m.n) of these are later
cleared by a passed test result, then the blame assigned to these m components
should be removed from them and re-distributed among the other n- m com-
ponents. Similarly, when the plausible blame attributed to some line L (by an . ..
instance of Rule-lb) is later confirmed by a failed test result, then the blame
that had been assigned to the m components that line L feeds (by the
corresponding instance of Rule-la) should be removed* and re-distributed to the
other n- m components using a new instance of Rule-la - one triggered by the
new test result.

This form of non-monotonicity has been implemented using the basic truth
maintenance system incorporated in the electronics simulation system EL
[Stallman and Sussman, 1979]. Borrowing the terminology of Stallman and Suss-
man, at each moment an assertion can be believed with some certainty, and
labeled in, if there is some well-founded support behind it (i.e., a test result);

* Although that blame is removed from these components, the com- - S
ponents are not cleared since this test result provides no evidence that
they are good, but merely that one of their inputs is bad.

348



otherwise it is labeled out. An assertion that is less than completely certain can
move from in to out by the introduction of contradictory evidence that is com-
pletely certain. To implement this capability we store with each discrete piece 0
of evidence that is less than completely certain the test result and rule that ori-
ginally introduced it to in. This is the only information necessary for removing
and re-evaluating the plausible consequences of a rule in light of new informa-
tion.

3. Deciding the Best Test 0

The a posteriori model of beliefs has two basic purposes. Firstly, the sys-
tem can present to the user a list of suspect components, ordered by their
current probability of being faulty. This can either be done at any time, upon
request from the user; or automatically, when the maximum such probabability
exceeds some user established threshold. Secondly, the system can use the
model of beliefs, in a hypothetical mode, to help decide the best test for the user
to make next. If there are no initial symptoms the best test model of beliefs can
be used to construct, a priori, a binary decision of best tests to be performed at
each step of such a troubleshooting session. If there are initial symptoms, a
custom tailored binary decision tree which takes these initial "test results" into
account can be computed at the beginning of the troubleshooting session (or . ..
dynamically recomputed if the user later contributes, through his own initiative, .

other test results.)

The best test is basically that test which, for its cost, will bring the system
closest to isolating the fault to a single component. Since there are two possible
outcomes of each test (i.e.,pass or fail), the system must consider both of them
separately. It does this by simulating the effect that each such outcome would
have on its model of beliefs. A heuristic static evaluation function is applied, in
each case, to the model of beliefs to estimate how far the system would then be
to having isolated the problem to one faulty component.

We have applied the gamma miniaverage method in a straight-forward
manner (and refer the reader to [Slagle and Lee, 1971] for a detailed discussion
of the method itself.) The nodes in the search tree represent, on alternating lev-
els, the possible tests that can be performed and the potential outcomes ot of ......
the possible tests. A static evaluation function G applied to an outcome node on
the frontier of the search represents the loss, or cost, of terminating at that
point. The value of the static evaluation function G which we have empirically
chosen is the size of the component ambiguity set (the still suspect corn-
ponents.) G could also represent the total cost of replacing all of the com-
ponents in the ambiguity set, if this data were known. 0

* To calculate the backed-up value of the "and" node which represents the
cost R of terminating the search after performing test Tk, the static values
G([o,Tt,E]) for each possible outcome oj of Tk (where [oi,Tk,E] represents the
model of beliefs after outcome o of test Tk is incorporated into the model of
beliefs E) are combined with the cost CT of performing test Tt and the condi-

tional probabilities PT(ot I E) that test Tk will have outcome oi (given the evi- -
-

dence E that has been accumulated thus far) using the formula

R(E.T ) =CTk + FP~k(o, E).G([oiTk.)
I

An approximation of the a posteriori, probability PT,(oi I E) is maintained in the

system's a posteriori model of beliefs (see, for example, rule schemata Rale- I b
and Rule-2a.) The value of G([oi.rT E1) is calculated by statically evaluating the a.

349



posteriori model of beliefs. The risk R basically represents the total of the
actual cost and the potential cost if the troubleshooting session were to be ter-
minated at that point. 0

Since we want to choose the test Tt of minimum risk R(ET), the backed-
up value of the "or" node which represents this decision is

R(E) =min R(E, T).

To allow for multiple levels of look-ahead, and a better estimate of the best
test, this backing-up process can be repeated as many levels as resources per-
mit. Not only can these backed-up miniaverage values be used for estimating
the best test Lo make next, but using gamma cut-offs, this search can be done
efficiently,BS
4. Future Work

The algorithms have been implemented in Franz LISP on a VAX :_1/780 com-
puter and produces reasonably good decision trees for block diagrams that
include series, parallel, and feedback circuits. For example, in the case of a
simple series circuit where all test costs are equal, the system reduces to the
standard half-split method (i.e., binary search.) In the more realistic case of a .
2-dimensional circuit, where there is a real ambiguity about where the "middle"
is, the system performs much better than the half-split method. In the next few
months this basic system will first be applied to troubleshooting a standard
oscilloscope, the Tektronix Model 465, and its performance will be evaluated by
our domain expert. To test the generality of the system, it will then be applied
to troubleshooting a sophisticated piece of military electronics, such as the 0
WLQ-4 Intercept Receiver.

We will also be adding a learning component, in the style of the Self-
Improving Diagnostics system SID [Hughes Aircraft Corp., 1980], to retain and
periodically refine generated rules. The probabilities within a rule, initially
assigned by the Rule Generator, would be changed to reflect the actual distribu-
tion encountered by the system over time.... __

A more difficult improvement that we will be exploring is a more informed
Rule Generator. We will attempt to incorporate an ability to reason with
knowledge about component function (in addition to circuit topology and com-
ponent failure rates.) Also the Rule Generator should know when to use assump-
tions that narrow the set of possible faults (e.g., that faults are always upstream
from a bad line) but are not always correct (see [Davis, 1982b]).

Acknowledgements

We would like to thank our domain expert, master technician Vr. Mark Hul-
bert, for his time and patience; Prof. Kenneth De Jong, Prof. Michael Gaynor and
Dr. James Slagle for their advice; Dr. Randall Schumaker (NANAIR) for directing
our attention toward the problem of automatic test program generation (ATPG),
and Dr. Jude Franklin, especially, for introducing us to the general problem of
electronics troubleshooting.

350



References

[1] Brooks, Ruven, personal communication (June, 1982). 0
(2] Davis, Randall, "Expert Systems: Where are we? And where do we go from

here?", pgs. 3-22,The Al Magazine, HI, Number 2 (1982a).

[3] Davis, Randall, et. al.,"Diagnosis Based on Description of Structure and
Function", in Proceedings of the 1982 National Conference on Artificial
Intelligence (AAAI-82),(1982b). -•

[4] Duda, R.0, Hart, P.E., Konolige, K. and Reboh, R., "A Computer-Based Consul-
tant for Mineral Exploration," Artificial Intelligence Center, SRI Interna-
tional, Menlo Park, CA (Sept., 1979).

[5] Friedman, Leonard, "Extended Plausible Inference," Proceedings, Interna-
tional Joint Conference on Artiftcal Intelligence (IJCAI-81), (August, 1981).

[6] Garvey, Thomas D., et. al., "An Inference Technique for Integrating
Knowledge from Disparate Sources." in Proc. IJCAI-81., (August, 1981).

(7] Genesereth, Michael R., "Diagnosis Using Hierarchical Design Models," in
Proc. AAAI-82, (August, 1982).

[8] Hughes Aircraft Corp., "Knowledge Based Systems (KBS) Study for Advanced
MATE Systems," HAC Report No. FR80-75-869 (May, 1980).

[9] Hyafil, Laurent and Rivest, Ronald L., "Constructing Optimal Binary Decision
Trees is is NP-Complete," pgs. 15-17, Information Processing Letters, 5, 1
(May, 1976).

[0] Loveland, Donald W., "Selecting Optimal Test Procedures from Incomplete
Test Sets," in Proc. First Intern. Symposium on Policy Analysis and Infor-
mation Science, Duke University, Durham, N.C., pgs. 228-235 "June, 1979).

[11] McDermott, Drew and Brooks, Ruven, 'ARBY: Diagnosis with Shallow Causal
Models", in Proc. AAAI-82, (August, 1982).

[12] Nilsson, Nils J., Principles of Artificial Intelligence, Tioga Pub. Co., Palo
Alto, CA (1980).

[13] Shafer. G., A Mathematical Theory of EVidencePrinceton University Press,
Princeton, NJ (1976).

[13] Shortliffe, Edward H., Cbmputer-Based Medical Consultations: MYCIN,
American Elsevier Pub. Co., New York, NY (1976).

[14] Simpson, William R. and Balaban, Harold S., "The ARINC Research System
Testability and Maintenance Program (STAMP)", in Proc. 1982 IEEE AUTO-
TESTCON Conference, Dayton, Ohio (October, 1982).

[15] Slagle, James R. and Lee, Richard C.T., "Application of Game Tree Searching
Techniques to Sequential Pattern Recognition," p. 103-110, Communications

S."of the ACM, 14, 2 (February, 1971).
[16] Stallman, Richard M. and Sussman, Gerald J., "Problem Solving About

Electrical Circuits," in Artificial Intelligence: An MIT Perspective, Winston,
Patrick Henry and Brown, Richard Henry (eds.), The MIT Press, pgs.33-91
•(979).

% .

L351

i~i! 1



ABOUT THE AUTHOR

Mr. Richard Cantone is currently engaged in designing
expert systems, primarily for electronics troubleshooting,
at the Navy Center for Applied Research in Artificial
Intelligence. Prior to this, he worked at Rutgers University
on various Al applications, including the expert medical
diagnosis system, EXPERT. Mr. Cantone received his
Master's degree in computer science with a concentration
in natural language processing at New York University in
1978.

3-5

ABOUTTHE ATH352

Mr. ichrd Cntoe i curenty egage indesgnin • --



-S

Implications of Artificial Intelligence for a User
Defined Technical Information System

M Robert 3. Smillie Oo' Navy Personnel Research and Development Center

o Introduction

A colleague of mine, Bob Johnson at AFHRL, has developed a scenario 0
about the Air Force technician of the not-too-distant future. In the "Sgt.

I Bayshore scenario" (Johnson, 1981), a female flight-line technician uses a portable
delivery device to obtain technical information for maintaining and repairing
aircraft. The information, accessible with the delivery device, is updated daily to
reflect the latest changes and revisions to the stored information. The device
provides technical information, including troubleshooting strategies, in video and •
audio outputs. Training information adapted to meet the needs of the individual
user is available on request. Voice recognition permits direct interaction with the
information data base. Available display options inciude step-by-step procedures
and animated graphics. Although the delivery device is stand-alone and portable,
there is a communications link that provides direct access to a central data bank........ -
The inclusion of Al allows the technical information system to (1) evaluate all
troubleshooting data to revise and update troubleshooting strategies and (2)
determine appropriate training when training mode is engaged. Is this different
from what I call a User Defined Technical Information System (UDTIS)?
Probably, only by degree.

-S

What Is a UDTIS?

...... UDTIS is obviously an electronic, computer-based device related to
Stanley Kubrick's 2001's HAL. Size is unknown, but UDTIS has contained within it
or has access to all the technical and training information of the particular
operational system for which UDTIS covers. UDTIS may have multiple screens to - S
permit simultaneous viewing of different types of technical information. Display
characteristics are unknown, but it does present the technical information in a
form that the user readily understands. The degree of interactiveness is also
unknown, but UDTIS is more than user friendly.. UDTIS h.As to '"know'-the
background and capabilities of the user and has to'"anticipatedthe needs of the
user.

What UDTIS Is Not

UDTIS is not:

I. A fully automatic device that finds 100 percent of the
faults. It is a maintenance aid that integrates
information from all sources--historical records, built-in
test equipment (BITE), automatic test equipment (ATE),

353



etc.--to guide the technician through various heuristic
paths until the most likely cause of the fault is found.

2. A device that factors man out of the loop. Embedded
training and enrichment is a must. The intent is to
provide the technician with information required to do
the job at hand, while at the same time, continue to
provide constantly changing training and technical
information based upon the growing skills and
knowledges of the technician. UDTIS has to facilitate
transition from a novice technician to a skilled
experienced technician.

3. A device that makes all the troubleshooting decisions for
the technician. UDTIS does provide logical alternative
troubleshooting paths based upon evaluation and
integration of all troubleshooting data, regardless of
source.

Al Implications for UDTIS

In UDTIS, Al may be required for: 9

I. data retrieval

2. data presentation

3. user performance monitoring

4. problem solving

5. training

Data retrieval. UDTIS has to be an efficient data retrieval device.
Since it would be impossible to design a system with unlimited capabilities, a
UDTIS type approach has to account for some basic assumptions about the range
of users. How will users who vary within an experience level, as well as across
experience levels, access the information in UDTIS? More importantly, how will
information be stored and linked in UDTIS in order to provide the user with the
correct data when requested? The information data base for any one system
covered by UDTIS will be large. Besides the source data, UDTIS will have to have
historical files on all the fielded systems, i.e., if a direct communications link is
not possible, then it will be necessary to update the UDTIS historical files via
additions to the memory modules in a very timely manner.

The incorporation of a natural language parser that could analyze all _ .
user input requests, in order to provide UDTIS the file tag it needed to retrieve
specific information, would ease the requirement on the user to remember file
tags. An alternative to a comprehensive parser is an "interactive expert" within
UDTIS. The "expert" could process the initial input and continue to query the user

354

_ 0



until a match was made between the user request and the file tag for the specific
information. The implication for the "expert" is the use of menus, e.g., the
Knowledge Management System (KMS) (Information Technologies, 1983).
Although a menu-driven system requires unambiguous input to retrieve
information, the KMS structure guides the user through a hierarchical use of
menus, i.e., choices, until the correct information is found. KMS has a flexibility
that allows novices to browse through the data while an experienced 'iser can
jump to the specific information. Perhaps, the incorporation of an Al natural
language parser within a menu-driven structure would provide for those situations
where the menu approach fails.

Data presentation. UDTIS has to have the capability of providing
technical information in formats compatible with several different levels of users.
The Air Force's Computer-Based Maintenance Aids System (CMAS) (Thomas,
1982) is presently studying the need to provide multiple tracks of technical
information to users. By having a wide range of format options available, the user
can have the technical information presented according to his specific needs. In
essence, the user designs his own technical manual. Since all technical jobs have
to be performed according to an established standard, there will be a requirement
to develop a core track of minimal technical guidance, e.g., a checklist. From
this track, however, detailed and versatile tracks can be developed. Assuming
that there will also be some selection criteria and possibly initial training
requirements, the most detailed track can be determined.

With Al it would not be a simple matter of depressing a "help" key and
obtaining more detailed information. Rather, the "system expert" in UDTIS would
have to help determine why the user is having a problem and provide the
appropriate information. Historical files of the user would have to be maintained --
and updated continuously in order for the UDTIS "expert" to provide technical .
information tailored to the particular user. In the display of troubleshooting
information, UDTIS would have to have the capability of integrating source data
in order to create a format compatible with individual user requirements.

User performance monitoring. For UDTIS to retrieve and display
information in a form that is compatible with the user's needs, it will have to
maintain accurate files of all users. While an ultimate in this area would be a
device that constantly monitors task performance, UDTIS will, at least, have to
record what types of technical information the user requested in previous
encounters in order for UDTIS to "learn" what level of detail each user requires
during subsequent interactions with the technical information. With the inclusion
of training information, UDTIS can monitor training progress and Integrate that - ___

information with the user's level of detail requirements for technical information
to develop a complete model of each user's skills and knowledge.

UDTIS has to be more than a device where the user can tailor the
information to satisfy his needs. UDTIS has to be able to analyze past interaction
to ensure all relevant information is made available to the user. When the match
between this relevant information and the user's perceived needs differ, UDTIS
should have the capability to provide all the relevant information, covertly, if
necessary.

355

r' "



Problem solving. UDTIS has to facilitate troubleshooting. Research into
the troubleshooting process (e.g., Hunt & Rouse, 1981) has suggested that
efficient fault isolation requires the use of both domain-free and domain-specific
cognitive skills. With the domain-free skill, a strategy is formulated for initiating
the fault isolation process to determine where to test. The domain-specific skills .
are used within this strategy to determine how to test. The results obtained from
the domain-specific tests are used to modify the domain-free strategy.

The requirement for Al appears to be in the area of domain-specific
skills. After a domain-free strategy is formulated to determine where to test, the
UDTIS domain-specific program has to decide:

1. What test needs to be performed?

2. How to perform the specified test.

3. How to interpret the results in order to modify the S
domain-free strategy.

With Al to analyze user capabilities during task performance and user
progress in embedded training, the formulation and modification of domain-free
strategies become continually changing processes. Applied to the domain-specific -

area, this same information can be used to determine (1) what tests are within the
capabilities of the user and (2) what level of detail is required to ensure the user
performs the test correctly.

The use of Al for troubleshooting implies that there is an "expert
troubleshooter" in UDTIS. The expert is more than a compilation of all the past
faults and how they were corrected. It has to be heuristic. ft has to integrate all .
the available information about a set of symptoms in order to determine the
testing path that will provide the most effective information to eventually arrive
at the suspected fault.

Training. As a tutoring device, Al in UDTIS can be very effective.
UDTIS will have to build a unique model of each user and continually change that . _
model as the user becomes more proficient in system knowledge and
troubleshooting capabilities. Assuming that UDTIS can be used to achieve a goal
of fully capable technicians who can maintain the system for which they are
responsible, the tutoring requirement becomes very important.

Development of a user model will have to account for both task 0
performance and training progress. The model will have to evolve through
repeated interactions of the user with UDTIS. In task performance, UDTIS will
have to collate and analyze the methods each user employs as he troubleshoots.
With this information, the model of the user can be changed to reflect how well
the user's performance improves or deteriorates. In addition, when the
performance information is integrated with training progress, the potential for a
more complete and accurate model of the user is greater than if a model was built
on either training or performance information alone. With the development of an
accurate model, UDTIS can be used to identify incorrect use of and missing
principles in the user's application of domain-free and domain-specific skills.

356

_0



Once identified, UDTIS can design an individualized training program and provide
individualized guidance during the troubleshooting process.

To facilitate the learning and maintaining of troubleshooting skills,
UDTIS can also be used to provide feedback to the user upon completion of a
troubleshooting task. Once the faulted system has been corrected, UDTIS can
evaluate the user's performance and provide immediate feedback on the quality of
that performance. To evaluate performance implies that UDTIS maintains a
model of an expert to which individual user performance can be compared. With
the availability of an expert model, the actual troubleshooting performance can
be interrupted if UDTIS "determines" that the user is pursuing an inappropriate
fault isolation path. The problem, then, is that UDTIS will have to determine if
and when it is "appropriate" to interrupt actual task performance.

Finally, in both troubleshooting and nontroubleshooting task
performance, UDTIS can be used to determine when the presented information
should be enriched. Enrichment is the addition of information to provide the user
with a more thorough understanding of (1) the task being performed or (2) that
part of the system being troubleshot or repaired. In other words, training
information is embedded in the technical information. UDTIS would have to
determine when, where, what, and how enrichment can be added.

Summary

UDTIS is an electronic, computer-based maintenance aid containing all
the technical and training information relevant to a particular system.
Incorporation of Al allows UDTIS to integrate automatic testing data and training
progress with the technical information to modify heuristic troubleshooting
strategies. UDTIS is not the ultimate in ATE or maintenance aiding, nor does it
replace training.

Since the user is the focal point for UDTIS, Al can assist the user in the
definition of that system by:

I. Providing complete information, even if the user does
not realize initially that more information is required
than requested.

2. Presenting the information in a format that is matched
to the user's capabilities for the task at hand.

3. Maintaining a dynamic model of the user for modifying
presented technical and training information.

4. Incorporating an expert troubleshooter to evaluate and
guide performance.

5. Providing an expert trainer to design an appropriate
training program that has both overt and covert
components.

357



REFERENCES

Hunt, R. M. & Rouse, W. B. Problem-solving skills of maintenance trainees in
diagnosing faults in simulated powerplants. Human Factors, 1981, 23 317-328. 5

Information Technologies. Knowledge management system: An overview.
Pittsburgh, PA: Author, September 1983.

Johnson, R. C. Integrated maintenance information system: An imaginary
preview (AFHRL-TP-81-18). Wright-Patterson Air Force Base, OH: Air Force
Human Resources Laboratory, Logistics and Technical Training Division,
September 1981.

Thomas, D. Computer-based maintenance aids system: Preliminary development
and evaluation of a prototype (AFHRL-TP-82-84). Wright-Patterson Air Force
Base, OH: Air Force Human Resources Laboratory, Logistics and Technical
Training Division, September 1982.

*.!

0

358

d



ABOUT THE AUTHOR

Dr. Robert . Smillie is a Research Psychologist with the
Navy Personnel Research and Development Center. At .
NPRDC, he has been involved in the development, .

implementation, test, and evaluation of a job performance
aid-based integrated personnel system. His interests
include the development and application of job
performance aid technology for troubleshooting and
nontroubleshooting maintenance tasks. As a member of
the Human Factors Society study group, he was involved in -

developing a comprehensive long-range human factors plan
for the U.S. Nuclear Regulatory Commission. Dr. Smillie
received his Ph.D. in human factors from North Carolina
State University.

3 .

359



STEAMER: An Overview with Implicatioms for Al Applications In Other Domains

James D. Hollau

Navy Personnel Research and Development Center
San Diego, Calfornia 92152

The great promise of the application of artificial intelligence software and hardware technology

to the solution of problems in a variety of domains is a refrain that one hears often these days. As

someone involved with research questions related to applying cognitive science and Al technology to

training and other areas, I am both encouraged and fearful of the attention Al is currently receiving.

I am encouraged because I too see tremendous promise in the technology and in the types of explicit

computational accounts of cognition emerging from Al and the other cognitive sciences. I am fearful -

though that people will not be sufficiently informed to be able to distinguish what L, currently possible

from the promise and that something akin to the history of computer-based instruction might obtain.

In this talk, I will attempt to accomplish the following: 

* discuss the underlying ideas which motivated us to initiate the Steamer effort.

0 attempt to give you a feel for the current status of the project.

* discuss some of the issues that have been raised by the effort.

0 provide a glimpse of the directions we plan to pursue in the future.

0 discuss the implications of Steamer for the application of AI to other domains.

-Ak--

Invited presentation at the Joint Services Workshop on Artificial Intelligence in Maintenance: Auomalc
Testng, Maintenance Aiding, and Training, Institute of Cognitive Science, University of Colorado,
Boulder, Colorado, October 4-6, 1983. Arpanet address: hollan@nprdc. Mail address: Future Techno-
logies, NPRDC, San Diego, CA 92152.

361

-9€



0

ABOUT THE AUTHOR

Dr. Jim Hollan is the leader of a cognitive science research
group at the Navy Personnel Research and Development
Center. He is also a teaching faculty member at the '
University of California at San Diego and a member of the
UCSD Cognitive Science Laboratory.

AL

362

S -_



(V APPLICATION OF ARTIFICIAL INTELLIGENCE

o TO
o EQUIPMENT MAINTENANCE

John H. Hinchman and Michael C. Morgan

General Dynamics
Electronics Division

San Diego, California 0

ABSTRACT

All military services are confronted with increased training costs, reduced training
budgets and a widening gap between the skills of entry-level personnel and the abilities 9
required to maintain increasingly sophisticated systems. Institutional training is being
minimized, and more emphasis is placed on on-the-job training. This requires a greater
reliance on built-in test equipment and organic automatic test equipment support.
Unfortunately, automated testing (built-in or off-line) does not unambiguously fault-
isolate all of the time. The result is a high rate (up to 30%) of removal and replacement S
of non-faulty assemblies. Reduction of the number of suspected faulty assemblies within
an ambiguity group requires manual troubleshooting. The manual troubleshooting
procedure used to fault isolate to a single assembly typically involves an exhaustive
method of remove-replace-retest. This manual troubleshooting method is expensive in
termw.-aLboth test time and logistics support. A computer-based Intelligent Maintenance
Aid (IMA) offers a solution to this problem.

3 -

363



I -.. i: - -- . -.r , -.. - .- - . - , .- . . .. - - _ _ . . . . . . . .

o0

1. INTRODUCTION

All military services are confronted with increased training costs, reduced training
budgets and a widening gap between the skills of entry-level personnel and the abilities
required to maintain increasingly sophisticated systems. Institutional training is being
minimized, and more emphasis is placed on on-the-job training. This requires a greater

. reliance on built-in test equipment and organic automatic test equipment support.
* Unfortunately, automated testing (built-in or off-line) does not unambiguously fault-
: isolate all of the time. The result is a high rate (up to 30%) of removal and replacement

of non-faulty assemblies. Reduction of the number of suspected faulty assemblies within
an ambiguity group requires manual troubleshooting, an exhaustive method of remove-
replace-retest. This manual troubleshooting method is expensive in terms of both test
time and logistics support. Our premise is that a solution lies in improving on-the-job
training and job performance aids. We need to provide tools at the job site that will
enable maintenance personnel to pick up where automated diagnostics leave off; thus,
fault isolation and repair can be completed in a direct and efficient manner. Our
approach combines enhanced job performance aiding and on-the-job training by means of
a computer-based troubleshooting "coach," the Intelligent Maintenance Aid (IMA). The
IMA possesses the knowledge of an expert maintenance technician and aids in fault
diagnosis and fault isolation. The IMA also acts as teacher, having the capability to
explain recommended actions and lines of reasoning. .

364

•S



0

2. INTELLIGENT MAINTENANCE AID

Automated test, whether built into hardware or performed off-line by special equipment,
does not unambiguously fault-isolate all of the time. Our project addresses the problem
of manual troubleshooting and the job performance aids that are needed by maintenance
technicians in the field. Our overall approach (Figure 1) is to provide the technician with
an intelligent advisor, or troubleshooting coach, that will assist in developing strategies
for productive fault diagnosis and isolation. To be useful and cost-effective, these tools
must have friendly interfaces, for the expert maintainer who participates in developing
an application package as well as for the maintenance technician. The software must be
self-tutoring to obviate specialized training and possess a supportive query mechanism.

In recent years, knowledge-based systems and system-building tools developed by
researchers in artificial intelligence have been exposed to the general public. The
success of programs that perform medical diagnosis (MYCIN, CADUCEUS), develop a
VAX computer configuration based on customer requirements (R1 or XCON), or locate

- mineral deposits (PROSPECTOR), offers promise for other applications where expert
practitioners are in short supply. One of those applications is the diagnosis and isolation
of faults in electronic equipment.

CAD DATA BASE DESIGN DATA LARGE COMPUTER

MAINTENANCEFLOPPY DISK S

ANALYSIS ~: '

TRAINING AND AIDING DEVICE 0
AT THE JOB. SITE

, fEXPERT SYSTEM SOFTWARE

L P IE * TROUBLESHOOTING
DOMAIN EXPERT APPLIED STRATEGY| _ ARTIFICIAL

INTELLIGENCE * KNOWLEDGE BASE
- PROCEDURES
- FACTS
- RULES

Figure 1. Computer-Assisted Fault Diagnosis

365

P-- _ 0



"..

Requirements Definition- In establishing the parameters of our IMA, we first
cataloged the features and capabilities of a number of existing expert systems (e.g.,
MYCIN, R1, DART) and expert system-building tools and languages (e.g., EMYCIN,
OPS-5, ARBY). Most expert systems share a common three-part architecture: 0

1. Knowledge base of domain facts and heuristics

2. Inference procedure for using the information in the knowledge base for
problem solving

3. Global data base, or working memory for keeping track of input data and
history and status of the consultation

The key feature of this architecture is the clear separation and distinction between the
knowledge base (data) and inference mechanism (control). This separation results in a
high degree of extensibility; rules and facts are not intertwined within some control
structure and can therefore be easily modified, added or deleted. When rules in the
knowledge base include a measure of strength-of-belief or strength-of-evidence (usually
represented by a numerical attribute), we have a means of handling inexactness. This is
particularly useful in troubleshooting where fault isolation does not necessarily follow
deterministic procedures, but rather each new finding contributes evidence to a line of
reasoning. When an audit trail is maintained during a consultation, we have a means for
examining the assertions (similar to popping data off a stack) that guided a particular
line of reasoning. This would be difficult to do without a separation of knowledge from
the inference mechanism. This explanation feature is not only useful when building a
system, but also provides the basis for a training feature as well.

With few exceptions, existing systems have primitive human interfaces, both for the
system builder and the end user. The reason for this is that the majority of expert
systems software has been developed in an academic environment and represents
research findings as opposed to production software. In most cases, the developers and
target users were PhD-level (or MD) practitioners. Because of these interfaces, most
systems require a go-between (knowledge engineer) to elicit and transfer the facts and -

rules from a domain expert to the system knowledge base. This approach to knowledge
acquisition is costly and time-consuming. We need friendly interfaces that will allow
expert maintainers to interact directly with the knowledge base with a minimum of
training. Similarly, for our end user (the maintenance technician), the system should be
self-tutoring. In addition to an explanation capability, the system should be able to
assist in the "how" of gathering a new finding if necessary.

In our study of troubleshooting strategies, we find that we must consider the following as
our IMA evolves:

a. Multiple Failures - The simplifying assumption of single failures, applied in -

some systems, results in severe performance limitations when viewed with real
world expectations.

b. Temporal Reasoning _ Unlike most current diagnostic systems, we are not
dealing with a snapshot in time. For example, in medical diagnosis the
consultation makes use of patient history and the results of recent tests. In our _
world of troubleshooting, our "patient" changes during the consultation. That

366



is, during a troubleshooting session, it is not uncommon to do things like isolate
a circuit, break a feedback loop or ground an input. When these changes in
configuration occur, some of the assertions made previously will no longer be
valid. It is necessary, then, to be able to distinguish between things that are S

true for all time and those facts and rules that are valid during certain event
intervals.

c. Cost of New Findings - The fault isolation process usually involves reducing a
candidate list of suspects to a unique problem source. We often need to gather -

additional data (run a diagnostic test, make a measurement) in order to reduce
the list of competing hypotheses (suspects). In deciding which test to run or
which measurement to make, we must consider the cost of obtaining the new
finding. Here, cost is defined in terms of the time required to gather the new
finding; however, cost could have other dimensions as well. For example, a
prescribed action could have destructive consequences or a particular measure- S

ment may require the borrowing of assets, thereby incurring cost to the loaner.
In any case, we must have a choice mechanism for requesting the new finding
that will give us the most information at the least cost.

d. Top Down -Bottom Up Control Structure - For efficiency in diagnosis, we
want to reduce the search and decision space as rapidly as possible. The
approach is to reduce the top level problem (fault symptom) to a succession of
smaller problems. This method of hierarchical decomposition is particularly
well suited to electronics maintenance in that hardware is designed and
described hierarchically and most troubleshooting strategies include a "divide
and conquer" approach. An efficient implementation in this case is to combine
two search strategies by going from the bottom up (data-driven search or
forward chaining) to obtain findings that are helpful in reducing the hypothesis
space used in a top-down approach. In a top-down search, hypotheses are
asserted that in turn generate subgoals or hypotheses at another level of
refinement (goal-directed search or backward chaining).

The ARBY system-building tool, developed by Smart Systems Technology, met most of
our requirements and is documented well enough to allow changes and modifications. We
procured an ARBY license, installed the software on our VAX 11/780, and began building

*. our prototype at the end of the first quarter of 1982. The following paragraphs describe
our prototype IMA.

Development of Prototype Expert System - For the target of our prototype, we
selected the diagnostic task of reducing fault ambiguities in the microwave stimulus
interface (MSI) of the F-16 Avionics Intermediate Shop. The MSI provides an RF

stimulus over a frequency range of 10 MHz to 18 GHz to a unit under test by routing,
modulating and amplifying the inputs from two frequency sources (Figure 2). The MSI
has analog and digital circuitry, a feedback loop, and RF switches, thereby providing a
good mix of troubleshooting problems. Examples of ambiguity groups encountered by a
maintenance technician when a diagnostic test fails are presented in Figure 3. When the
test fails at step 300430, and if the failure is not frequency-dependent, the technician
must determine which one of eleven subassemblies has failed. The instructions to the . _

technician at this point (from the Technical Order) are to start at the top of the list for

367



• .'-'-.:-',-' - - - - -. . . - -. . . . - -". -'-'-' > -- - - --. , ". " .. - •-; T - .":"- _ 7 .. -
*1~~ I. L .. .

MICROWAVE STIMULUS INTERFACE "'.I 1A3 MICROWAVE ASSEMBLY A7
RF IN 0RF OUT

LRU

RF SIGNAL
SOURCES
1A2A4IA2AI

RF POWER CONTROL VIOEO SWITCH SPECIAL CIRCUITS PCs j

AND LEVELING ASSEMBLY AS A5

P/O A5

TO T
COMPUTER

TBI-S CONTROL PROGRAMMING

FROM TEST BUS PCB B PCs
COMPUTER Al A A3

- ~ ~ ~ ~~~ .- -- - - - - -

S3GA-Ol"
BAZoo2 Figure 2. Problem Domain

the indicated ambiguity group and remove and replace subassemblies, rerunning the
diagnostic test after each replacement until the faulty component is identified. The goal
of the IMA is to help the technician to arrive at an unambiguous solution with a minimum
(best case is one) of removals and replacements.

We will begin the description of our prototype with an overview of the system-building
software, and follow with a sample consultation with the prototype aid.

The system-building tool we are using to develop our IMA can be viewed as a high-order
language for defining both the rules that a system needs to know and the units of
interaction used by the system during the process of diagnosis and fault isolation.
Written in an extended dialect of Franz Lisp, the software has two principal components: . __

The Inference Manager and Human Interface Manager. The Inference Manager is
responsible for maintaining hypotheses that explain current findings. The Human
Interface Manager isolates and controls the units of interaction, called interaction
frames, used to gather new findings. The key feature in the Lisp extension is a
mechanism to define data types. Data types provide a structure for defining the
vocabulary and the configuration of the system. Once the typing is established, the
system designer is forced to be consistent. This has proved to be an invaluable check,
ensuring consistency of arguments in the rule structure. All inferences are accomplished
using a deductive retriever module designed for the manipulation of relational databases.
The declarative and procedural knowledge is represented by predicates (lists of symbols
having a logical value of true or false) and forward and backward inferencing.

368

. . . k -... . . .. . . . . . .. . . . . llli I0l-i| I



,MST I£P
NUBR rRilIBL. PROBABLE C ALi. REMEDy

.10043 I L-'t..tng loop mowiatie at

Ii 'MW CIold nut 1-lth

Lf dB within • O 5 d' '

a FWnquny at 1n.- .f fa ld I [. tt- cinlG wti h Remon and mpLace sax poston zmn Sit'h 
.i. W.4 thian 2 Gil 2A A 3AS1

2 IU 20OU MiltRIF Rynthe-nr Rafte, o RF SYNTHESIZER lAZA4 MAN-

t ALTROL'BLESHOOTING pariph. So,

3 i nilt h p- Rebme and repla.ce RV -Wltth panel I A2AS

h . '. i i f fail I I r... InNom,'i dt- nl .hI ouler Remon id rplale low n, q" ny diition

u hI- than 1 , d-iyf, a i oupltdetetr 2AI A3A7DC2

it4'rtmu'n*alt uim 'i fail I 2000)MtIlt - lilYnthind K-tIlon, andrnpit. n RIFynhett iond ttfl
O t'., has, 2 Glw itnal Ijnanti genetor I A2AI

2 Ai pottiron i -1i swiht h Rmnove and replae -in po.Aion Io. switch

2AIA3A7SI4

d Frn qu-my atimn ou nt I -oi. htmiinc L twtch Rnt.. sd mpkce so5 plitOn ot swich

fatlo tnnet than 10 2AIA3AIi5

2 SPOT R -. t.w h Remove and repaie SPDT RIF Inith-
2A1A3ASI 6

3 KI ltandfltllhflOr Rm7an and ,npla- H i Rand aiphf -,

'l.4'3A7AR3
SPmr...mtlni laloit 1, I 1 ill Ilttili ida, iwit I4 , mone and Laplace t Ilmi,li twt mmi -- "i

lmmul'n.-. dhm, iIi .I0 2S.I Al.7 2

Ih-li i .In..' . tTIIT itLh 
-.mn. ,lid ollnim PIti II ,m1, h

Ir2.4 I :1.71.1

,1 :I ll I im iidh Rl.mm il," . .pl.m'4 l l' ai .~l t

'I4 'Ill R.14'

4 iriiii.li%...iit.r di.. , , mmi amid r,'llnc mini. lrm tmn .ftI 'f

d.. . 2. 11 .. \.- 1( I

i i ..uI ... .. i. n ,I .. ..l..... ...'ll.t t I iin ,i. i i1
--4 1 4.14\741

: ~ ~ ~ ~ ~ ~ ~ ...... ...l l.. ..tt t 
........m l ,''a, ll l .l l >

2%1 i i 7.2.,

.1l .l'l1l IlI -i.,i. RI i,... 'litd mifli' "'lll HI .Ill.'.

hI Jlt II Il .1111, 241 J i, ".

83A-O"

BAZ003

Figure 3. Ambiguity Groups for Manual Troubleshooting

In building the knowlege base for a diagnostic consultation, there are three tasks that the
domain expert must perform:

1. Identify the fault-related findings
2. Define hypotheses to explain the given findings
3. Provide the means to gather more information when appropriate

Findings are simply assertions of predicates. At the top level, for example, an initial
finding might be the frequency at which a certain diagnostic test failed. Based on the
frequency at the incidence of failure, a predicate is asserted in the knowledge base. The
hypothesis manager then attempts to find hypotheses, which are now subgoals, to explain - . S ...
the given findings. Once a subgoal is validated, it becomes a finding for the next level of

369



refinement. The validated subgoal can also remain at the current level, as a finding in a
compound hypothesis needed to explain some other hypothesis.

To refine hypotheses, we must have the ability to gather information as the consultation
evolves. This capability is provided by the Interaction Frame mechanism that solicits
information as needed. The most common way in which an interaction frame is triggered
is when a I6ackward chaining rule is trying to validate a subgoal. After an interaction
frame has been run, new assertions are present based on the information supplied by the
user. Examples of Interection Frames (IFs) built for MSI troubleshooting are illustrated
in Figures 4 and 5. The IF of Figure 4 is called early in the consultation to narrow down S
to a particular ambiguity group. Figure 5 shows the IF that recommends checking one of
the frequency sources.

Currently, interaction frames consist of 10 fields:

1. ifargs - Arguments of the IF that allow the passing of parameters to the IF.
An example is the "switch" argument of Figure 5 that enables one IF to refer to
a specific switch depending upon which actual switch is in the call.

2. qtemplate - The template that contains the question that is asked of the user
when the IF is run. Variables passed as arguments (ifargs) are placed in the -.
message where an argument match occurs. S

3. description - Provides additional information to the user, if needed, regarding
the requested action.

4. goodanstest - Define the acceptable user response.

5. clarification - The answer to a user "why" query. Tells the user why the
information is needed.

6. assertions - The predicates to be asserted depending upon the answer supplied
by the user; e.g., referring to Figure 4, if the user answers the question with 2,
meaning the frequency at incidence of failure was between 500 MHz and 2 GHz,
then the predicate (freqfailform between500MHz2GHz) is asserted in the data
base and becomes a new finding. Note that any word marked by ? is a pattern-
matching variable.

7. forms - Expressions that invoke the IF. Instantiation of the form during the
inference process causes the frame to run.

8. how - Enables the user to ask assistance in acomplishing the task associated
with the IF.

9. cost - A qualitative measure of the cost to accomplish the IF task.

10. comment - Used by the system designer to comment on the purpose, results or
side effects involved with the frame.

Defining Rules - The system designer defines two types of rules:

1. accounts-for rules
2. evidence rules S

370



C 0 I

u, .c i Go a

W- NO- Go m 0

do -L 0

2 0i 0 .C 0 0

41 G-3-q-

'-. 4. 0.f - L

14- f %

a

4- .~ QSaS
.4 14 1 U 4c

'U0 -4- E 3
u 0

L-o UioIc im

o~~- -4 r1CC C

m j .m 'V 'o a CJen T W

0 f Ifl W I cc

0z Z
10 a.O 0 13.3 a

3 ~ 3 d

-~~~ 0 0 -4.

'l -a L' 4U'UUk

-f bD1

4- ul 0 0f-i

371-



0 0

0 of .0

10 0

.0 c 1

00 to -

116 C s

W1 Ci ua

oC C o

a. u Jc ka zJc

GD ILI D -

-I I -p. Ill U 4
u C*U m-

al jto 0.? vC5~

Cl '- C

2 - U. S~
0 'a . . -M a --

0 Vm 0 111 M

Zto 1 - - C~ A r
U .) U - I 4U -

0- *'4 C - 51 *'--

1 .-.4CJ1 CJ ~ 0
-- 0.1 4- 0'Ma 0, -- 31 J-.W D

D tA .0 LA '--. A .C* if 0 ;.
C- all m *-7~ cu C-

Off : t.'- 4 Go~~~1 4- IMJ. . .U .~.

Z 0, -o9. V obJ ' CS.-- l(

.01 g v u m 4--5A C I Z - Z -GD EU*M IL

3Mft - 1 T.- Ll0 r O p C

372



Figure 6 has examples of accounts for rules and evidence rules. Accounts-for rules have

the form:

(accounts-for ?hypothesis ?finding ?given)

In Figure 6, the accounts for rule afl-2 states

"The hypothesis that the probable cause of failure is switch1 accounts for the
finding that the frequency at incidence of failure was between 500 MHz and 2 GHz.""

Accounts-for rules are used to generate hypotheses. The refinement process is aided by .
the second class of rules, the evidence rules:

(evidence ?choicename ?option /comment/ ?amount)

In Figure 6, the evidence rule evl-2 states:

"There is strong evidence (weight of 100 points) that the probable cause is switchl if

switchl switch-check shows switch1 is bad."

This illustrates part of the implementation for handling inexactness. If, at this level of
refinement, a faulty switch 1 would only provide weak or suggestive evidence (such as
when there are competing suspects), the number of points for strength-of-evidence would
be considerably lower than 100. The choice mechanism of the inference procedure keeps
track of the evidence during refinement. Evidence rules are usually backward chaining
rules. A backward chaining rule is stated by (<-consequent antecedent) with the
antecedent becoming a subgoal. The antecedent is the form that is associated with an
interaction frame. If there is an instantiation of this form, an IF will be invoked.

Sample Consultation - The trace of an actual diagnostic session between a user and the
intelligent advisor is presented in Figures 7 and 8. The user responses are indicated after
the prompts > or w >. The principal purpose of this simplified example is to demonstrate
the rich query mechanism available to both the user and the designer. The first query is
the step number at which the diagnostic test (DIAG MS!) program failed. The user knows
that DIAG failed at step number 208210 and selects the frequency associated with that 3-
step.

Upon specification that the frequency at incidence of failure was between 500 MHz and
2 GHz, the advisor now has three hypotheses (obtained from afl-2, afl-3 and afl-4) to
explain the failure.

The goal now is to reduce the number of hypotheses. To accomplish this, evidence rules
are examined, together with the cost of obtaining the evidence. Since the cost of the
panel-status-if is lowest (cost=5), it gets run first (Figure 8). In response to this request,
the user entered "reason" in order to look at the current goal stack. There are two
stacks currently active; one reasoning that the panel is bad and the other reasoning that
the panel is good. Entering "1 why" here allows us to examine goal stack #1, indicating
that the supergoal is the consequent part of the rule evl-4. Since it is a backward
chaining rule, the antecedent part of the rule proves the supergoal; i.e., the predicate
(panel-check rf-switch-pan bad). This, of course, is what the IF is attempting to deduce.

The next input from the user was an up-arrow, meaning move up the goal stack. This
shows that a test of the panel was selected to gather evidence in favor of accounts-for
rule af 1-4 (prob-cause rf-switch-pan).

373



.

G~lal

6. C-

-C 0

od - n--w

C~~ C 4IG

4a E

o~~. Z - -

U* u. --
3~I -4 V~( DG

.4~~ .4 0 s MI

P- 3f C- 4j - - =.

If a-c XI
Col C- I

GEl GE N0 3lC . U

11 J1 aj 1) viDi

ji zi 31 I-

ip AJ CJO -. 1 ]t' 40 vi avi

3 'U 0 :' ~U 0-374



0

La

'.41
* 0

-c-

090

N. ca1

L
to o

4- 4-- - 0--1'v

*l N0 .3 
0: 

W t - .

C -- .. -. .-.-

T- - 4-

-o 
r- 4- - &.

Li 0 X N0 Ult-a'a

ulC VI to m t
08 .. 2 4m

'4. (0 oN e.3m Nu iU
W C a4'4 CX 04 A A (5-.-

* 4-. 
a)I 08 0 i Q1 (i. al

08 zt- Ii I3 I Lj)-. 10t .0
COl -j alj do ii 08 0 03 o

14 C- - -0 ill 
*-' A-- 3 

0 
D4

00 4j 0 0 - ' 2J

-- ' 4 -4 C p !L wl W 7 )3 L I

0~-4 -4 0 3 it01

*~ rt 08~ 0 C. t1 0
A i CtCI . C i AU

C t or a s. *.375ot



Cl

.z

V 0

-44 4-
3 D C13

0 -d

cJ44 C6.V £--

4A -- C

Li 0. C.4 4

ul w' 0 0 0 .3 t

4# 1 to --l GD .4

3 4 DI I u. z 41
Go u Q .- C 4 CL. u Wn 0 D- -

-4 0 m 0.9 -4 1 i -)
c - m 1 -1 C- I Mo . j C

.3 ..4 Lt 0. GD & 1- 4-

to 0 I In to M0

0-- u . r- N. -.4 0- 0
.C 4''- *. w' Li CC -4

m -~.4 4. aU LI W u("
14J .-- 4' ka 3 4' -. 1 l 4U
a 71 $A I - w Go 0 %-- 0l
of 0~- 0 1- h. x z z- 1- -4 £iu4

o. 4-t4- GD 9 o 0 4- u -. C-.C4W' -
o -.4 4-.0) C 0. .- -'

*l LA 0~~- LA Lo c 0 n 4' z -'s-- :
*~~ (a I4z C. ra 'ID 1 I a . G ''- ...

3 I- . > as >i *a >- - -4

riG "I' CL GD L Li C C&-'- Li GDA-
.0 *-0 - fo in I' 0 t ~ 4 I CI

to A.t - t- 3 4 3- 0. > -3'0 a
j a- NC40. In In :I Cj ID.- 4- 0.

o m I Cn I I .1 I 4 . ~ l '.

-4 ~ ~ ~ ~ L .-a-U4 I' 4- I -(a. -.- 0 U

to L 3* . 34 U) f. I O A j 0 0

z e 0 n G 0 A. * Li GD U M
GD ~ ~ r ;-.j- 3. - C*4 U t

4- .-- 44GD 4 Li U - 0 C'GD3764



N1 -C

N 0C-

-. 4 U- N t a -

m .C '.I- 0) a

ci ato am a#

3 00 is6a
'Ii z3 a~ 01 31
- l 0.0 QCJ 0 4 3 %.

4-'S
Z .

F-4.- ciz

-44 CA-. DI .,o ~ ut
al .C -IAI

-0o ri u - 'm. E

ci!. .C' 0 o

*~~LI CA .0.~ n-i u 0
03 4 .Z . 11 1

01 11 0-4 C- 01. &- ~
ap .4wa

40l 00 1- !

.- 4 ccU i U 4

0- 14 l- -4i~

0 .3 0 > -0 0 : "1 3

Ti ..-. '0-.4~04 01. C' C!.377.

-4----' .4 --. 4 -.-.- -AN



Typing "q" at the prompt w > returns the advisor to the state of waiting for a response to
the question initially posed by the IF. By responding "good" at this point, the advisor
deduces that the switch panel is not at fault.

There are two hypotheses left at this point. Once again, more information is required
and the IF with the lowest cost is invoked. By responding "good" after request 4
(Figure 8), the user has stated that switch 1 is working. This concludes the consultation.
The advisor does not ask about the third possibility because it has concluded, by process
of elimination, that the failed element is the RF synthesizer. S

The above example illustrates how the designer can use the query mechanism and the
goal stack to validate lines of reasoning. Similarly, the technician can turn to the query
mechanism for help in obtaining new findings ("how"). For example, rather than remove
and replace switch 1, the technician is instructed to determine switch status by running a
software diagnostic.

3. SUMMARY

We have established the basic requirements for a computer-based Intelligent
Maintenance Aid (IMA) for electronic equipment. We have a prototype system running,
with knowledge base development directed toward realistic problems. The issues of
multiple failures, temporal reasoning and cost of findings are extremely important in
fault diagnosis and have been considered in the design of our system. Future work is
required to reduce the cost of building the knowledge base and to provide improved
interfaces, both for the domain expert and the maintenance technician. When fielded,
the IMA will increase productivity in the maintenance shop while reducing the incidence
of replacement of non-faulty assemblies.

378

L . I 1 " i'l fi l . . . . II In l '11 11 . .. IIIIII I i lll. . . .. . . . . ...



ABOUT THE AUTHOR

John H. Hinchman, Engineering Staff Specialist with
General Dynamics Electronics Division, is responsible for
research and development in applied artificial intelligence.
His research interests involve the application of artificial
intelligence technology to the domain of electronics
maintenance. He has developed a prototype expert system
for diagnosing and isolating faults in electronic equipment
and has produced user friendly interfaces for job
performance aids using computer graphics, videodisc
technology, speech synthesis, and speech recognition.
Awarded an M.S. from the Florida Institute of Technology
in 1970, Mr. Hinchman has published technical papers in
system design and data collection and analysis.

379

L -I



RD-R145 349 ARTIFICIAL INTELLIGENCE IN MAINTENANCE: PROCEEDINGS OF 5/6
THE JOINT SERVICES..(U) DENVER RESEARCH INST CO JUN 84

j AFHRL-TR-84-25 F33Mi-82-C-881i3
UNCLASSFIE E / 64 N

m|hE|hhh|h|hhI
m|hh|h|hEEEEEI
EE||hh|hh|h|hhE

I Ehhflhfhflhfhflf
llnlllllllln

hnmnhmnhmhmhhl



*~. 
IL 2 . - . .. .

.62

U11111.2

111111o

11111 25 LAj~ 11.

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

r



Knowledge Based Tools for

CElectronic Equipment Maintenance
0

Thomas Lee Williams - :

Smart Systems Technology
Suite 300

6870 Elm Street
McLean, VA 22101

(. .!

Abstract

The sophisticated weapon systems on which our, national
defense depend pose considerable maintenance problems. Increased
training costs, reduced training budgets. and a widening gap
between the skills of entry-level personnel and the abilities ..
required to maintain such weapon systems suggests the need for
improved job performance aids and on-the-job training. Knowledge
based tools for electronic equinment maintenan.& offer a novel
approach to this problem.-In -this paper'-we presentsAour
experience at Smart Systems Technology over the past eighteen
months in building knowledge based maintenance aids for
electronic equipment. The presentation begins with a discussion
of ARBY in the context of the Network Diagnostic System, and
concludes with an overview of the Knowledge Engineering Language.

381

:....381



1. Introduction

The tremendous maintenance problem presented by the
sophisticated weapon systems on which our national defense
depends is well known and widely documented. Increased training
costs, reduced training budgets, and a widening gap between the
skills of entry-level personnel and the abilities required to
maintain such weapon systems suggests the need for improved job
performance aids and on-the-job training. Knowledge based tools
for electronic equipment maintenance offer a novel approach to
this problem. In recent years kndwledge based systems have been
successful in tasks as disparate as medical diagnosis (CADUCEUS)
and VAX computer configuration (Rl). The succens of these
projects offers promise for other applications wiiere expert
practitioners are in short supply, and electronic equipment
maintenance is a leading candidate.

At Smart Systems Technology we have been building knowledge
based tools for equipment maintenance over the past eighteen
months. Our first project, supported by General Dynamics
Electronics Division, involved the design and implementation of
ARBY [1), a programming environment for the construction of -
knowledge based maintenance aids. As part of that effort we •
implemented an intelligent advisor for aiding maintenance
technicians in troubleshooting faults in the F-16 Avionics
Intermediate Shop, a system that Is. continuing to evolve at GDE
121.

Over the past year, 4ith the support of Shell Development
Company, we have been developing the Network Diagnostic System .
(NDS), a knowledge based system for the isolation of multiple
failures in a nationwide communications network (3]. As a result
of our experience with NDS, and the earlier work with General
Dynamics, we have more recently undertaken, again with the
support of Shell Development Company, the implementation of the
Knowledge Engineering Language (KEL), a new knowledge based
systems implementation languao- inspired by ARBY, but modified on 4P
the basis of practical experience. The remainder of this paper
is a presentation of the evolution in our approach to knowledge
based aids for electronic equipment maintenance. The
pres, nLation begins with a discussion of ARBY in the context of
the UDS project, and concludes with an overview of KEL.

2. A Case Study

The Network Diagnostic System is a knowledge based maintenance
aid that assists a human technician in diagnosing multiple
faults in a nationwide communications network (COMNET). Our
effort in this project focused on understanding the effort
required to implement an expert system and on identifying missing A-
features in the existing technology. In the process of
implementing NDS it was necessary to extend existing expert
systems technology dealing with multiple and intermittent
failures. The domain was chosen on the basis of prior domain
experience with trouble shooting electronic equipment, the

382



availability of a domain expert, and by expected benefits
from the eventual operational system. Criteria considered 0
during the scoping of the project were that it require less than
one person year of effort, that it be a non-trivial
application, and that it avoid excessive uninteresting detail.

2.1 The problem

COMNET is a geographically distributed communications
network supporting a variety of application systems. The
application software runs on a central computing facility and
is accessed remotely by users throughout North America via
interactive terminals. The communication path from each user
terminal to the central computer is a circuit (called a 'virtual
wire') composed of both digital and analog electronic
devices. The field repairable units, i.e. the components S
which can fail and be repaired, include telecommunication
processors, statistical multiplexors, modems, telephone
circuits, frequency divisional multiplexors, RS-232 cables
and computer terminals (see fig. 1.).

Diagnostic inference in COMNET draws upon several different types ....
of knowledge. The topology of the network, and in particular •
the virtual wire which has failed, is fundamental in guiding the
diagnostician's search for the fault. In general the
diagnostician will try to exploit hierarchical search
methods. To optimize the search the diagnostician must know
which diagnostic tests are available, what their information
content is in terms of which components they test, and their
cost. Actual physical devices have limited test points
which are chosen by the designer, not the diagnostician. As a
result, diagnosis is often driven by the availability of test
points and diagnostic tests. There is the additional factor of
accessibility for certain tests. In cases where the
diagnostician does not have the required access to perform
dejired tests he must proceed as far as possible on the basis
of incomplete or partial information, often resorting to
alternative types of knowledge, such as frequency of failure
data.

COMNET can fail in several modes and in general the single
failure and non-intermittency assumptions do not hold
([4,51). Because the function of the various components in a
virtual wire are closely inter-related, it is often the case ...
that one failure will lead to, or cause, other dependent
failures. For example, a statistical multiplexor may be
inadvertently reset, and as a result it will reset the baud
rate on a remote modem with which it communicates. Multiple
failures can also be independent. When a user cannot access an
application system he may tamper with the terminal, RS-232 cables
and/or the modem. As a result, there could be, in addition to -
the original failure, several unrelated independent failures.
The presence of telephone circuits introduces frequent
intermittent failures due to noise in the telephone equipment,

and such intermittent failures can collaborate with unrelated

383

_9



COW010

HOUSTON (CENTRAL)

WEST ORANGE "11a1

MUSCSEDIISON

Figure 1. C0OMNET

384



failures elswhere in the network to generate multiple independent
failures. It is also possible for repair operations to fail,
further restricting the assumptions the diagnostician can
reasonably make.

2.2 ARBY

Because our problem was one of fault isolation within an
electronic system, we chose ARBY as our implementation
vehicle for NDS. ARBY was designed by Drew McDermott and Ruven
Brooks for Smart Systems Technology specifically for
applications in electronic fault diagnosis. For a more
detailed discussion of ARBY see ([61).

Fault isolation problems are represented in ARBY as
heuristic search through a space of successively more S
refined hypotheses as to where the fault is located. Each
hypothesis has associated with it an evidence weight which is a
numerical measure of the current evidence for or against
that hypothesis. Evidence weights are used in choosing
among competing hypotheses, as will be described shortly.
The evidence for and against the various hypotheses is
obtained from the available diagnostic tests. .5

Terminal hypotheses are hypotheses which assert that the
fault is in a field replaceable unit (FRU). When ARBY has
isolated down to a terminal hypothesis it invokes a repair
operation for the corresponding FRU. Since each diagnostic test
yields information about certain components, the tests, or more
accurately the evidence derived from them, partitions the
set of terminal hypotheses into subsets that are viewed as
intermediate hypotheses. The possible evidence will again
partition the set of intermediate hypotheses, and this
process is repeated until a hierarchical structure has been
defined on the hypotheses. This hierarchical
structure is the starting point of the refinement graph which
facilitates hierarchical search techniques, greatly improving -.
the efficiency of the search.

The hypothesis refinement algorithm, shown in figure 2., proce6ds
as follows. At each stage in the search there is a current
hypothesis. The current hypothesis is replaced by its set of
refinements, as determined by the hypothesis refinement
hierarchy. A choice is then made among the competing - ...
hypotheses based on relevant evidence. If the chosen
hypothesis is a terminal hypothesis, the appropriate repair
operation will be invoked. Otherwise, the chosen
hypothesis is an intermediate hypothesis, in which case it
becomes the new current hypothesis, and the refinement process
is repeated. If, at any point, there is insufficient evidence to
choose among competing hypotheses, the set of competitors
is returned as an ambiguity group. After a repair operation
has been performed, the termination test is executed. If this
test is satisfied, the ARBY consultant terminates. Otherwise
it assumes there are more faults and continues isolating.

385

" • . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . ." . . . . . . . l l E l l I s - -



When a choice must be made among several competing
hypotheses, evidence rules which increment or decrement
evidence weights of one or more of the competing hypotheses will
be activated. Evidence rules define how evidence, i.e. the
outcomes of diagnostic tests, affect the evidence weights
of relevant hypotheses. In the event that multiple evidence
rules could be activated at a choice point, the ARBY control
mechanism will choose the evidence rule that will have the
maximum impact on the decision with the minimum cost.
The impact of the decision is defined in terms of the
redistribution of evidence weights on the competing
hypotheses. As soon as a clearly superior hypothesis
emerges, it is chosen, eliminating the need to run additional
evidence rules and reducing the overall cost. The algorithm is
shown in figure 3. 6

The cost of an evidence rule is defined in terms of the
diagnostic tests that must be performed to activate that
rule. If a particular test has already been run, the cost to
an evidence rule requiring it is zero. Otherwise the cost of
a rule is the cost of any tests it requires, plus the cost
of any prerequisite tests. Tests will not be re-run unless 6
changes in the environment, such as the replacement of a
component, require it.

Interaction with the human diagnostician is handled through
interaction frames. Associated with each diagnostic test is an
Interaction Frame which contains i.nformation as to how that
test is performed. The information is organized
hierarchically in increasing detail so the human
diagnostician can request additional information as
required. The Interaction Manager also provides an
explanation facility to explicate the diagnostic inference up
to any arbitrary point.

2.3 NDS O

The Network Diagnostic System is a knowledge based maintenance
aid implemented in ARBY which assists a human technician in
isolating and repairing faults in COMNET, described in section
2.1. NDS uses a refinement graph constructed from eleven
terminal hypotheses and eight intermediate hypotheses (see
figure 4). Most of the diagnostic tests, of which there are
twelve including the termination test, are loop-back tests
which test subsections of the virtual wire. The rule
base, including evidence rules and interaction frames
(see [1,[61), consists of approximately 150 ARBY rules. The
current version of NDS required approximately four person-
months of knowledge engineer and one person-month of domain
expert. In the diagnostic expert's opinion the present
level of performance of NOS is comparable to an intermediate
level diagnostician. The rate at which new rules were
added increased significantly toward the end of the project,
due to increased understanding of the diagnostic process

386

- - - . . . . ' . . . . . . a m ,i - - • ann ' . . . . . . l . . . . . .. . . . .. : .. . . .



DoC411am'.Oo~f

6, ULaI %10sgu~

say,? ~.

'IALL u

SIT,

kC'io IWM5

M 0I

Figur 2.t Hyoo eisReiemn

W4600M."S.allp

CALL 60004VCO011C8

Figure 3. HypothsiSecto

3879C



OP FP I

---------

IO -5 SIRACBE- lR

Iem r" IUEIEC -S SOEWALS TR
COSM Ple" CD %IUSEATELO S

U\

Fi -- NEWR YOHEI TUTR

NPP lP LI C*S.-.1388

C*SN-.S -5'1C~q'CILE'-.I~49



0

by the knowledge engineer and increased understanding of the
implementation method by the domain expert.

The NDS project demonstrates the feasibility of constructing
expert systems for isolation and repair of multiple faults in
electronic systems. The project also points out two hurdles
to large scale deployment of expert systems in commercial
environments. First is the labor intensive nature of
current knowledge engineering practice. In many commercially
desirable domains the expertise required is extremely
valuable and of limited availability. Ultimately it will be
necessary to develop methods for at least partially
automating the construction of expert systems. In this vein we
are currently exploring algorithms for automatically
generating the refinement hierarchy for ARBY based consultants..
Second is the absence of a commercial quality expert system S
implementation vehicle which is a stable, supported product and
which runs on the variety of machines in use in the
commercial sector. We are also actively working to overcome
this second hurdle by designing and implementing KEL, a
Knowledge Engineering Language descended from ARBY, and studying
the requirements for porting it to machines such as the IBM 4300 -.

and the new generation of microcomputers. .6

3. KEL

Our experience with ARBY suggested enhancements to the system
at both a conceptual and pragmatic level. The underlying problem
structure representation of ARBY proved extremely well suited to
diagnostic inference, and has been substantially retained in KEL.
The implementation has changed considerably to facilitate a much
simpler, faster, and more portable system. There are two
general, or philosophical, respects in which KEL differs from
ARBY. First, KEL is intended to be a knowledge engineering
workbench for construction of knowledge based maintenance aids.
Since we have found that certain basic features of control in
diagnostic inference vary from domain to domain, we have made •
these features parameters of the system. KEL is, in a sense, a
language schema which must be instantiated by specific values for
certain parameters. These parameters include the threshold
function used in selecting the next hypothesis, the choice
function used in selecting rules, and the strategy for pursuing
multiple failures.

A second difference between KEL and ARBY, and most other
expert systems languages for that matter, is its relationsnip to
LISP, the implementation environment. Most systems of this type
create a new software environment on top of LISP. The basic
functionality of LISP is available at the new level, but only
through a potentially obscure and often inconvenient interface.

* Since we have found routine access to most of LISP's
functionality to be essential in constructing knowledge based
systems, we have taken a different approach. KEL extends the
functionality of LISP through the introduction of additional data
and control structures suited to diagnostic applications, but

389

I -9 ...



does not create a new environment which in any way isolates the
knowledge engineer from LISP. LISP and KEL fully interact, using
LISP's conventions.

The requirements that motivated the design of KEL are quite
similar to those behind ARBY. First, it is essential that the
system continue diagnosis even in the absence of complete and
reliable evidence. Second, the system must be able to isolate
and repair multiple failures. In practice, these two 0
requirements are necessities. They also imply a third condition;
that the system be capable of representing sequences of events,
and use its knowledge of previous stages in a diagnosis to guide
future behavior. For example, when faults remain after isolating
and repairing a fault, the diagnostician needs to know what
previous tests have been performed and their values in order to
know whether the state of the device has changed, and how.
Finally, the system should minimize the overall cost of diagnosis
by optimizing its evidence gathering strategy.

KEL, like ARBY, is based on the state transition model, with
hypotheses corresponding to states, and refinements corresponding
to transitions. The state transition algorithm uses evidence .
rules to allow a best first strategy, and backtracking to 0
accomadate partial knowledge. Special data structures, called
registers, are used to represent sequences of events and control
user interactions. The next section describes KEL in more
detail.

3.2 KEL Data Structures .

Since KEL is fully integrated with LISP, all the data
structures and operations available in LISP are available in KEL,
including atoms, lists, strings, numbers, arrays, etc. There is
an additional data structure, called the register, that behaves
like a LISP variable in that it can store values. There are two
differences, however. First, in addition to operations for
setting and retrieving the values of registers, there are
explicit PUSH and POP operations that allow registers to behave
like stacks. By PUSHing successive values of a diagnostic test
onto a register it in effect becomes a history of that test,
previous values being accessible by a generalized GETR routine.
The second difference is that registers can be defined as input
or evidence registers, in which case they are assigned additional
information necessary for conducting interactions with the user.
This information includes a message requesting that a test be
performed, the cost of the test, and explanations as to how and
why. If, when an evidence register's value is accessed, it is
undefined, the information associated with the evidence register
is used to conduct a user interaction. The value input by the
user becomes the new value of the evidence register. Otherwise
the current value of the evidence register is returned. An .
example of a register definition is shown in figure 5.

390

. -



0

(DEFREG USER-ACTIVATE

RANGE IMEMBER T NIL) •

COST 10
MESSAGE "PLEASE INPUT THE VALUE

OF THE USER-ACTIVATE TEST"
WHY "I NEED TO KNOW WHETHER SERVICE

HAS BEEN RESTORED" S

HOW "INSTRUCT THE USER TO
TRY TO LOGON"

1; CLOSE REFREG

Fig. 5. A KEL Evidence Register Definition

391



. .
" " . . . . .

3.3 KEL Control Structures

There are two special control structures in KEL; states, which 0
are implemented as LISP functions, and a State Transition Control
construct, STC. STC is a combination of an iteration construct
and a conditional branching construct. In LISP terminology, a
blend of DO and COND. The syntax for the STC expression is:

(STC 0

<termination-clause>

<transitions>

<rules>

<interpretation-function>

The <termination-clause> is a two element list consisting of a
termination condition and a value to be returned upon
termination, as in the Franz Lisp DO construct. The
<transitions> expressions is a list of transitions, or function
calls, that can be made from the current STC clause. Each
transition has a label by which it is referenced within the STC
clause, and a preference weight that may be used by the
transition selection algorithm in selecting the next transition
to evaluate. <rules> is a list of antecedent-consequent rules, •
the antecedents being arbitrary LISP expressions possibly
containing KEL evidence registers, and the consequents being
assignment statements that alter the weights associated with the
active set of transitions.

In keeping with the philosophy of a knowledge engineering
workbench, there is no fixed interpretation to the STC _0
expression. Its interpretation is determined by the
<interpretation-function> passed in as the last argument. If
this argument is not provided, a standard system default
interpretation function is used. The virtue of this approach is
that the same STC expression can have different interpretations
within a diagnosis depending on how it is used. For example, the
diagnosis can switch from best-first to depth-first, or change _
its threshold operator in the state transition algorithm. The
basic functions of the interpretation function are to: 1) deter-
mine the termination condition for the STC expression, 2) select
the next transition to evaluate, and 3) select the next rule to
evaluate when needed. Examples of intermediate and repair states
are given in figure 6.

392



$ - - . . * 0

EXAMPLE KEL STATE
(DEFSTATE CSM-SS I)
ISTC

[(Li (CSM-FDM) 0)
(12 (IUT 0)

(U(SS) 5)

1'OPBC:EMS 0ST 3'I)
(NULLP.BCK:TER-SSKTEMS (SETW L3 'MAN))

I LOOP-BACK:CSM-FDM (SETW Ul 'MINH)
I((AND 'LOOP-BACK:TERM-SS

^LOOPBACK:CSM-FDM) (SETW L2'MAX))

(OR -USER-ACTIVATE 'LOOP-BACK:CSM-SS) TI

)CLOSE STC
3;CLOSE DEFSTATE .

EXAMPLE KEL REPAIR STATE

(DEFSTATE TERM 0)

IMSG "THE FAULT IS IN THE TERMINAL" Cii

"CALL THE TERMINAL REPAIRMAN" CR
"TYPE 'DONE' WHEN THE REPAIR HAS
BEEN COMPLETED" CR)

(READ)

(RE-INIT-REGS '(ONLY LOOP-BACK:TERM-SS
LOOP-BACK:CSM-SS
LOOP-BACK:CSM-TERM
USER-ACTIVATE))

3CLOSE DEFSTATE

Figure 6. KEL State Definitions

393



3.4 Future Work on KEL

Application of the knowledge based approach to maintenance
aiding is still in its infancy. There are many significant
accomplishments to be made before knowledge based maintenance
aids come under wide spread use. In conclusion, we mention some
of them with respect to our experience with ARBY and KEL.

Ultimately, the time consuming process of hand coding human •
expertise must be automated. A solution along these lines would
consist of a KEL like general interpreter that accepts
representations of devices as input and 'evaluates' them with
respect to evidence, isolating and repairing faults. Lacking
such a general solution, semi-automatic means of constructing the
knowledge bases currently required by KEL are essential. In the
same spirit, more of the bookkeeping associated with building a
KEL based diagnostic system should be automated. For example,
KEL should keep track of which test results are anomalous, and,
after invoking a repair operation, automatically reset the
corresponding evidence registers to undefined and continue the
search for additional faults from the appropriate point. And -

finally, with respect to the human interaction facility, KEL
should allow mixed interaction in which the technician can
volunteer information which KEL will respond to appropriately.
Although the first objective is ambitious and not likely to be
forthcoming in the short term, progress on the latter three goals
is within reach.

4. References

1. McDermott, D. and Brooks, R. "ARBY: Diagnosis With
Shallow Causal Models". Proc. of the National Conference on
Artificial Intelligence, Pittsburgh, Pa., 1982, 278-283.

2. Williams, T. and Hinchman, J. "A Knowledge-Based Maintenance
Aid for Diagnosing Faults in Electronic Equipment", Prodeedings
of AUTOTESTCON, 1983. -

3. Williams, T., Orgren, P., and Smith, C., "Diagnosis of
Multiple Faults in a Nationwide Communications Network",
Proceedings of IJCAI, 1983, Karlsruhe, West Germany.

4. Davis, R., et al. "Diagnosis based on Description of
Structure and Function". Proc. of the National Conference on
Artificial Intelligence, Pittsburgh Pa., 1982, 137-142.

5. Genesereth, M. "Diagnosis Using Hierarchical Design
Models". Proc. of the National Conference on Artificial
Intelligence, Pittsburgh, Pa., 1982, 278-283.

6. McDermott, D. and Brooks, R. ARBY Manual. Smart Systems -Technology, Falls Church, Va., 1982.

304

°0



ABOUT THE AUTHOR

Mr. Thomas L. Williams, Vice President and Senior
Knowledge Engineer of Smart Systems Technology, has
been involved with projects to develop a knowledge
engineering language (KEL), diagnostic expert systems, and
other knowledge-based power tools. Dr. Williams holds an
M.S.E. in computer and information science and is a Ph.D.
candidate in computer and information science at the
University of Pennsylvania.

395

L -O



qWjm

0) S j
DELTA: An Expert System for Diesel Electric

* (V)Locomotive Repair

0. Piero P. Bonissone
i" Harold E. Johnson, Jr.

Knowledge Based Systems Program
and

Flexible Automation Systems Program
Corporate Research and Development 0

General Electric Company
Schenectady, N.Y. 12345

ABSTRACT

-- 3ln recent years, expert systems have become the most
visible and the fastest growing branch of Artificial Intel-
ligence. General Electric Company's Corporate Research and -
Development has applied expert system technology to the

* problem of troubleshootinq and the repair of diesel electric
locomotives in railroadrunning repair shops.<The expert

- -system uses production rules and an inference engine that
can diagnose multiple problems with the locomotive and can
suggest repair procedures to maintenance personnel. A pro-
totype system has been implemented in FORTH, running on a
Digital Equipment PDP 11/23 under RSX-IIM. This system con-

. tains approximately 530 rules (roughly 330 rules for the
- Troubleshooting System, and 200 rules for the Help System),

partially representing the knowledge of a Senior Field Ser-
vice Engineer. The interence engine uses a mixed-mode con-
figuration, capable of running in either the forward or ...
backward mode. The Help System can provide the operator

* with assistance by displaying textual information, CAD
diagrams or repair sequences from a video disk. The rules
are written in a representation language consisting of nine
predicate functions, eight verbs, and five utility func-
tions. The first field prototype expert system, designated
CATS-l (Computer-Aided Troubleshooting System - Version 1),
was delivered in July 1983 and is currently under field
evaluation.

397

-9"-



INTRODUCTION

In the last few years, expert systems [7-9] have become
the most visible and the fastest growing branch of Artifi-
cial Intelligence [1,5,12,14]. The objective of these sys-
tems is to capture the knowledge of an expert in a particu-
lar problem domain, represent it in a modular, expandable
structure, and transfer it to other users in the same prob- .0
lem domain. To accomplish this goal, it is necessary to
address issues of knowledge acquisition, knowledge represen-
tation, inference mechanisms, control strategies, user
interface, and dealing with uncertainty.

There are various approaches to the representation of
the expert's knowledge, spanning from logic [il], to seman-
tic network [3], frames [10] and production rules [6,13].
Each representation has its own advantages and disadvan-
tages, and this paper will limit itself to the description
of an expert system implemented using production rules.

Rule-based expert systems consist of a body of
knowledge (knowledge base) and a mechanism (inference
engine) for interpreting this knowledge. The body of
knowledge is divided into fact about the problem, and
heuristics or rIes that control the use of knowledge to
solve problems in a particular domain.

The facts represent atomic pieces of evidence describ- 7 -
ing the problem to solve. They can be generated at the
beginning of the session, by asking the user a fixed
sequence of questions that establish the current problem at J
hand. Facts are also generated throughout the session as a
direct result of system inference, and as additional ques-
tions are asked of the user.

The rules are conditional statements expressed in a
subset of English, thus easy to understand. Each rule con-
sists of a situation recognition part (premise) and an
action part (conclusion). The situation part expresses some
condition on the state of the data base, and at any given
point it is either satisfied or not. The action part speci-

*. fies changes to be made to the data base whenever a rule is
satisfied.

The inference engine is an interpreter of the facts and
the rules. Its task is to monitor the facts in the data
base and execute the action part of those rules that have
their situation part satisfied. The inference engine can
operate forward (event-driven) or backward (goal-driven).
In the forward mode, it tries to arrive at a goal, starting _ ..
from the available facts. In the backward mode, it selects
a goal and then verifies whether or not the supporting facts
are present or can be inferred.

398

°°



0

PROBLEM AND PROPOSED SOLUTION

The General Electric Company's Corporate Research and 0
Development has applied expert system technology to demon-
strate the system's feasibility in the area of troubleshoot-
ing. To test these techniques, the problem selected was the
repairing of diesel electric locomotives in "running repair
shops*: railroad maintenance personnel must detect and
repair a large variety of faults that have partially dis-
abled a diesel electric locomotive. The a priori informa-
tion available to them is the list of "symptoms' reported by
the engine crew. More information can be gathered in the
shop, by taking measurements and performing tests that may
consume excessive "shop time" if performed by inexperienced
personnel.

The result of this development effort is a rule-based
expert system, DELTA (Diesel Electric Locomotive Troub-
leshooting Aid) [2], which guides the troubleshooter in his
task, enforcing some disciplined troubleshooting procedures
that will minimize the cost and time of the corrective 0
maintenance.

A prototype system has been implemented in FORTH, run-
ning on a Digital Equipment PDP 11/23 under RSX-llM. (The
system also runs on a PDP 11/70 under RSX-llM-PLUS and in
emulation mode on a VAX 11/780 under VMS.) This system con- ..
tains approximately 530 rules, partially representing the
knowledge of a Senior Field Service Engineer. Roughly 330
rules are devoted to the fault diagnosis and repair pro-
cedures, i.e., the Troubleshooting System, while about 200
rules form the Help System. The Troubleshooting System uses
a mixed-configuration inference engine based on a backward
chainer and a forward chainer, as illustrated in Figure 1.
The Help System, uses the forward chainer of the same infer-
ence engine to respond to requests for information from the
expert system. When the user hits the OHELP" key, the sys-
tem provides additional information, such as the location
and identification of locomotive components, replacement
part classification, and description of repair procedures.
To accomplish this task, the system uses CAD files stored in
TEKTRONIX line graphics format and VIDEO pictures stored on
a laser video disk.

A pictorial description of a session with this expert
system is illustrated in Figure 2. A fixed sequence of
questions is used to gather the initial facts about the
locomotive problem, such as unit number, model year,
reported symptoms, etc. An associative information table
provides additional facts, such as unit standard features,
unit history of failures, model failure propensity, etc. -
All these facts constitute the starting point for the troub-
leshooting process.

399

M-



The set of rules (heuristics) that embeds the empirical
knowledge about the diesel electric engine is functionally
partitioned into knowledge spaces such as mechanical system,
electrical system, etc. Within each knowledge space, the
rules are subdivided according to hypotheses (fault areas),
such as Operator Error, Engine Unable to Make Power, etc.

A set of meta-rules (a smart index of the knowledge
partitions) retrieves from the various knowledge spaces the
subsets of rules associated with all the hypotheses that
could be relevant to the initial symptoms. This collection
of hypotheses constitutes a preliminary diagnosis. Working
in a backward mode, the interpreter tries to prove or
disprove each hypothesis, based on both initial facts and
additional facts inferred by the system or asked of the
user.

The result of this process is a final diagnosis that
indicates the successful hypotheses (faults) and their
corresponding corrective actions (repairs).

INFERENCE ENGINE

This expert system is based on a mixture of control
strategies, since its inference mechanism can work in either
forward or backward mode (Figure 1).

When the initial facts are input by the user, the
META-RULES load a set of HYPOTHESES and a set of IFF-RULES,
IF-RULES and WHEN-RULES (see discussion of rules below).

The BACKWARD INTERPRETER then tries to evaluate each
hypothesis with the given set of rules and current facts.
The evaluation of a hypothesis (goal) is a three-step pro-
cess. First, the system scans the list of facts to verify
whether the hypothesis is already known to be true or false.
If this is the case, then evaluation terminates. Otherwise,
the system scans the conclusion of each rule to determine
whether the hypothesis could be proved by at least one rule.
In such a case, the system recursively evaluates each clause
(sub-goal) in the premise of that rule. Finally, when no
hypothesis (or argument) can be directly inferred by a rule,
the system requests information from an external source
(either the user or a sensor).

During this deductive process, new evidence (NEW FACT)
needed to prove a hypothesis could be inferred by the BACK-
WARD INTERPRETER or input by the USER/SENSOR. When NEW FACT
is written in the list of facts, the FORWARD INTERPRETER is
activated. This interpreter scans the META-RULES, IFF-
RULES, IF-RULES and WHEN-RULES, trying to execute any rules
containing NEW FACT in their premise.

400



. . . . . . .. . I ......

. . . .. . ... .. .. . ........o... .4 ...
.. ...-.. .

.... ....

...... ..o..w.
.. . ... .... -. ..

....... ... ...
._ _ _ _ .S.. . . . . . .. . ...L. .. .... ..... ... ......... ...z .. ..... ...... ... .......0.. .. .. .. .. .. .... .............0...

... ......

I- U.w * wr4

LU I - IL

0o' Iw I
LL -- -- J

W401



..ll..EE. .
(,A lu~f

2 LI

u-j

0 I z 0
I~IL

to t 0 0

402



The META-RULES verify whether or not some new knowledge
(new set of hypotheses and corresponding IFF-RULES, IF-RULES
or WHEN-RULES) is required and whether or not the existing
knowledge should be reorganized, by reordering the set of
current hypotheses, as a result of the presence of NEW FACT.

The IFF-RULES and the IF-RULES try to find some new
evidence that can be inferred directly, based on the pres-
ence of NEW FACT. The new evidence could later provide a
shorter path in the deduction process. These rules can be
accessed by both the backward and forward chainers. IFF-
RULES are "if-and-only-if* type rules (if A then B, and if
not-A then not-B). IF-RULES are mif-thenu type rules (if A
then B).

The WHEN-RULES attach properties and activate pro-
cedures associated with NEW FACT. These rules can only be
accessed by the forward chainer, thus preventing the back-
ward chainer from using them to establish some goal. WHEN-
RULES are Owhen-then" type rules (when A then B).

If any of the above rules has a fully satisfied premise
(since no explicit rule-chaining or user-prompting is
allowed during the evaluation of rules in the forward mode),
then the FORWARD INTERPRETER executes that rule, writes
another NEW FACT, and iterates again. This forward-chaining
process stops when no rule can be executed by the FORWARD
INTERPRETER, and control is returned to the BACKWARD INTER-
PRETER.

The BACKWARD INTERPRETER will continue its deductive
process, until a hypothesis is proved or the entire set
HYPOTHESES has been exhaustively evaluated. .Ali-

REPRESENTATION LANGUAGE

The rules that form the knowledge base of the Troub-
leshooting System and the Help System are written in a spe-
cial representation language. This user-extensible language

* currently contains:

- nine predicate functions to describe the conditions of
the premise of each rule, -.Ask-

- eight verbs to describe the actions and inferences in
the conclusions of each rule,

five utility functions to interact with the user and
display alphanumeric, graphic or pictorial information.

Each rule is a conditional statement describing the

logical implication:

403



.-

(premise) _cJ_> (conclusion)

The weight "cf" is the certainty factor, a number
between -1 and 1, which indicates the strength of such
implication. This number is used to control the propagation
of uncertainty in rule-chaining, to control the combination
of different pieces of evidence supporting the same conclu-
sion, and to evaluate the overall degree to which a premise
is satisfied.

Each premise is an intersection of clauses. Therefore,
a premise is satisfied if All its clauses are also satis-
fied. In this case, the intersection of clauses corresponds
to a boolean AND. However, this operation could be extended
to a fuzzy intersection, e.g., MIN, if the truth-value of •
the clauses can take values within the interval [-1,1).

Each clause is defined by a predicate function and an
argument composed of a 3-tuple <object attribute value>.
Each clause is satisfied if its predicate function returns a
true-value when applied to its argument.

Each conclusion is a disjunction of actions that are
executed once the premise of the rule has been satisfied.
Each action is defined by a verb and an argument.

Moreover, there are five utility functions that can be
present in the premise or in the conclusion of the rule.
These functions are transparent to the rule interpreter, in
the sense that they do not affect the truth-value of the
premise and do not modify the list of facts. The purpose of
these functions is to help the user with text, graphics or
video-images. These functions form the basis of a rule- -0
driven help system.

A listing of the predicate functions, verbs and help-
functions is provided in Appendix I. Appendix II illus-
trates three rules of the Expert System, describing a fault
in the locomotive fuel system, and two rules of the Help 0
System describing related available information.

CONCLUSION

The first field prototype of this expert system has -
already been implemented in a rugged unit, packaged by
COMARK, containing a PDP 11/23 (running RSX-11M and an
enhanced version of fig-FORTH), a 10 mega-byte Winchester
disk, a VT100 terminal and a Selanar graphics board. A SONY
laser-video-disk player and an additional color monitor com-
plete the configuration of this field prototype system. The
system has already shown promising results since its recent
delivery to the General Electric Company's Locomotive Opera-
tion in July 1983. The mixed-mode configuration of its

404



- -- . . . "

inference engine performs very well. The FORTH implementa-
tion proved to be easily transportable to small micro-
processor-based systems while maintaining fast execution
speed. The man-machine interface is very user-friendly and
allows the user to interact with the system via menu selec-
tions or simple (single keystroke) answers such as: Yes, No,
Unknown , Why?, Help.

During the next six months, the locomotive troub-
leshooting system will be tested in the field to verify the
accuracy of its knowledge base and the reliability of the
hardware configuration. In the following phase of this pro-
ject, the knowledge base will be expanded to approximately
1200 rules, to cover, with increased depth, a larger portion
of the problem space.

405

405

I 9



REFERENCES AND RELATED BIBLIOGRAPHY

[1] A. Barr, E. A. Feigenbaum, "The Handbook of Artificial
Intelligence' vol. 1 and 2, William Kaufmann Inc., Los
Altos CA, 1982.

[2] P. P. Bonissone, "Outline of the Design and Implementa-
tion of a Diesel Electric Engine Troubleshooting Aid",
Proceeding of Expert System 82, pp. 68-72, Brunel
University, Egham, England, September 14-16, 1982.

[3] R. J. Brachman, "On the Epistemological Status of
Semantic Network", in "Associative Networks, Represen-
tation and use of Knowledge by Computers", pp. 3-50,
Academic Press, 1979.

[41 E. Charniak, C. K. Riesbeck, D. V. McDermott, "Artifi-
cial Intelligence Programming", Lawrence Erlbaum Asso-
ciates, Hillsdale, NJ, 1980.

[5] P. R. Cohen, E. A. Feigenbaum, "The Handbook of Artifi-
cial Intelligence" vol. 3, William Kaufmann Inc., Los
Altos CA, 1982.

[6] R. Davis, B. Buchanan, "Production Rules as a Represen-
tation for a Knowledge-Based Consultation Program",
Artificial Intelligence, vol. 8, pp.15-45, 1977 S

[7] R. Davis, D. Lenat, "Knowledge-Based Systems in Artifi-
cial Intelligence", McGraw-Hill, 1982.

[8] F. Hayes-Roth, D. Waterman, D. Lenat, "Building Expert
System", Addison Wesley, Reading, MA, 1983.

[9] D. Michie, "Expert Systems in the Micro Electronic
Age", Edinburgh University Press, UK, 1979.

[10] M. Minsky, "A Framework for Representing Knowledge" in
"The Psychology of Computer Vision', pp. 211-277,
McGraw-Hill, 1975.

[11] N. J. Nilsson, "Principles of Artificial Intelligence",
Tioga Press, Palo Alto, CA, 1980.

[12] Y. Pao, G. W. Ernst, "Context-Directed Pattern Recogni- S
tion and machine Intelligence Techniques for Informa-
tion Processing", IEEE Computer Society Press, 1982.

[13] D. Waterman, F. Hayes-Roth, "Pattern-Directed Inference
Systems", Academic Press, NY, 1978.

114] P. H. Winston, "Artificial Intelligence", Addison Wes-
ley, 1977

406



LS

[15] P. H. Winston, B. K. Home, *Lisp", Addison Wesley,
1981.

APPENDIX I

Description of the nine types of predicate functions
used in the FORTH implementation:

(1) EQ: evaluates the argument, and returns a true-value if
the argument was proven true (EQual).

(2) EVAL-ALL: forces an exhaustive evaluation of the argu-
ment and returns a true value if the argument was pro-
ven true at least once during its evaluation.

(3) NE: evaluates the argument and returns a true-value if
the argument was proven false (Not Equal).

(4) NC: evaluates the argument and returns a true value if
the argument was either proven false or unknown (Not
Confirmed).

(5) ND: evaluates the argument and returns a true value if
the argument was either proven true or unknown (Not 0
Disconfirmed).

(6) ASK-Y: prompts the user with a particular question (the
comment associated with the clause), writes the argu-
ment as a new fact (with an attached certainty-factor
indicating the user's response) and returns a true- •
value if an affirmative response was input.

(7) ASK-N: like ASK-Y, but returns a true-value if a nega-
tive response was input.

(8) UDO: requires the user to perform a given action (the S
comment associated with the clause), waits for a con-
firmation from the user, writes the argument as a new
fact and returns a true-value if the action was con-
firmed.

(9) MENU: displays a menu of choices, prompts the user for - •

a specific menu entry selection, writes the selection
as a new fact and returns a true value if a legal entry
was selected. This function has three components:

MENU-T: displays the title of the menu
MENU-E: displays a menu entry
MENU-S: prompts the user for an entry selection

407



FOTHDescription of the eight types of verbs used in the
FORTH implementation: .

(1) WRITE: writes the argument as a fact in the list of
facts.

(2) CLR: deletes from the list of facts any existing fact
which matches the argument.

(3) EVAL: activates the backward chaining interpreter, try-
ing to verify the argument.

(4) EVAL-ALL: activates the backward chaining interpreter,
performing an exhaustive verification of the argument.

(5) ASK: prompts the user with a particular question (the
comment) and writes the argument (with an an attached
certainty factor indicating the user's response) as a
fact in the list of facts.

(6) UDO: requires the user to perform a given action (the
comment), waits for a confirmation and writes the
effect of the action (the argument) as a fact in the
list of facts.

(7) STOP: displays a termination message (the comment) to
the user and terminates the session, disregarding any
pending tasks.

(8) MENU: displays a menu of choices, prompts the user for
a specific menu entry selection and writes the selec-
tion as a new fact. This verb has three components:

MENU-T: displays the title of the menu
MENU-E: displays a menu entry
MENU-S: prompts the user for an entry selection

408i " i



Description of the five utility functions used in the
Forth implementation:

(1) DISPLAY: displays a message to the user.

(2) PAUSE: displays a message and waits for an acknowledg-
ment from the user.

(3) SHOW: displays a CAD file (graphic picture) or an 0

alphanumeric file on the user's terminal.

(4) SCREEN: clears the graphic plane of the user's termi-
nal.

(5) VDSHOW: displays a video-image (still frame or film
sequence) on the auxiliary monitor.

-40

409



APPENDIX II

Sample of three rules in the Expert System related to a

fault in the fuel system.

Rule 760
there is a fault in the fuel system at idling speed
and readings were taken from locomotive fuel pressure gage

IF:

EQ [ ENGINE SET IDLE ]
Is the engine at idle?

EQ [ FUEL PRESSURE BELOW NORMAL ]
Is the fuel pressure below normal? fLess than 38 psi?}

EQ [ FUEL-PRESSURE-GAGE USED IN TEST ]
Did you use the locomotive gage?

EQ I FUEL-PRESSURE-GAGE STATUS OK I
is locomotive gage known to be accurate?

THEN:
WRITE IFUEL SYSTEM FAULTY 1 .00

establishes that there is a fuel system fault.
End of rule 760

Rule 1270
the locomotive fuel-pressure gage is OK

IF:
UDO I FUEL-PRESSURE-TEST-GAGE STATUS ATTACHED ] A

Attach a known good pressure gage.
ASK-Y [ FUEL-PRESSURE-TEST-GAGE READING SAME-AS FUEL-GAGE I

Is test-gage reading the same as locomotive-gage reading?
THEN:

DISPLAY [ FUEL-PRESSURE-GAGE STATUS OK ]
The locomotive-pressure-gage is OK.

WRITE I FUEL-PRESSURE-GAGE STATUS OK ] 1.00
establishes that the locomotive-pressure-gage is OK.

WRITE I FUEL-PRESSURE-GAGE STATUS ALREADY TESTED 1 1.00
establishes that the locomotive-gage has been tested.

End of rule 1270

410

" - * . . . . . . . . . .. .. . .. . . . m l m . . . . . .. .. .. . ' . .. . . . . . . . . .



r -- . --- - . - -.. .- -... . . . . , .- • .. . .

9

Rule 1460
there is at least one faulty fuel system component

WHEN: 0

EQ 1 FUEL SYSTEM FAULTY ]
The fuel-system is faulty

THEN:
DISPLAY I FUEL SYSTEM FAULTY I

There is a fuel system fault. 0

WRITE [ FUEL PROBLEM SOLVED ] -1.00
establishes that the fuel problem is not solved.

EVAL-ALL [ FUEL SYSTEM-COMPONENT FAULTY I
is evaluating for a faulty fuel system component. -

End of rule 1460 0

-.- -

i0

° ..

4111

,o •

L •



Sample of two rules in the Help System describing
available information relevant to the subgoal of verifying
the accuracy of the fuel pressure gage.

Rule 5190
you want to see the Fuel Pressure Test Gage Menu

WHEN:
EQ [ FUEL-PRESSURE-TEST-GAGE MENU HELP] -.

Request FUEL PRESSURE TEST GAGE Menu
THEN:

CLR [ FUEL-PRESSURE-TEST-GAGE MENU HELP ]
Forgets Request

MENU-T [ FUEL-PRESSURE-TEST-GAGE SELECTION INVALID ] 1.00
This Menu contains information of the
FUEL PRESSURE TEST GAGE

These are your choices:
MENU-E [ FUEL-TEST MENU HELP ] 1.00

I want to go back to FUEL TEST Menu
MENU-E [ FUEL-PRESSURE-TEST-GAGE PICTURE HELP ] 1.00

CAD Picture of pipe plug where test gage should be attached w
MENU-E [ FUEL-REGULATING-VALVE VIDEO HELP ] 1.00

VIDEO Picture of regulating valve where pipe plug is located
MENU-E [ GOAL: BACK TO EXPERT OR STOP 1.00

End o1 help. Back to our problem
MENU-S I FUEL-PRESSURE-TEST-GAGE SELECTION FINISHED ]

Please enter your selection by number:
End of rule 5190

Rule 5210
you want a VIDEO picture of fuel regulating valve

WHEN:
EQ [ FUEL-REGULATING-VALVE VIDEO HELP ]

Request Picture of regulating valve where pipe plug is located
THEN:

CLR [ FUEL-REGULATING-VALVE VIDEO HELP ]
Forgets request

VDSHOW [ 16120 16120 0 ]

WRITE [ FUEL-PRESSURE-TEST-GAGE MENU HELP ] 1.00
We want to use Fuel Pressure Test Gage Menu

End of rule 5210

412

I -"



S

ABOUT THE AUTHOR 0

Dr. Piero P. Bonissone is a Systems Engineer with the
General Electric Research and Development Center. He
has carried out research in Al, expert systems, simulation,
fuzzy sets, interactive graphics and process control. He
also leads the development team for the Diesel Electric
Locomotive Troubleshooting Aid (DELTA), and is an
Adjunct Assistant Professor of electrical computer and
systems engineering at the Rensselaer Polytechnic
Institute in New York. Dr. Bonissone holds a Ph.D. in
electrical engineering and computer science from the
University of California at Berkeley. He has published
over a dozen articles in the area of expert systems,
decision analysis, and interactive interfaces.

I

413



AN EFFECTIVE GRAPHICS USER•0,,,INTERFACE FOR RULES
AND INFERENCE MECHANISMS

oby
0m J.W. Lewis, PhD

Information Syste4ut Laboratory
I Corporate Research and Development

General Electric Company

ABSTRACT base indirectly. The domain expert sees the knowledge base
ASl the technology of rule-based inference mechanisms through a knowledge engineer who codes the domain exper-

matures, knowledge, acquisition-the creation, structuring, tise into rules, interprets the interactions among rules, and
and verification of rules-becomes increasingly important. verifies that the rules will perform as expected. The end
The accuracy and completeness of the rules in the knowledge user sees the knowledge base through a sequence of direc-
base determine expert system Terformance, and the cost of tives and questions supplemented by English-language expla-
acquiring that knowledge base dominates all other hardware nations.
and software costs in practical systems.

To reduce knowledge acquisition time and error rate, a In industrial and military environments, the applicability
new interactive graphics interface for rules is bcing designed and performance of expert systems are limited by the availa-
and implemented in GE Corporate Research and Develop- bility of knowledge engineers, the cost of the knowledge
ment. In the new system, each set of rules is represented as acquisition process, and the low skill level of many end users
an AND/OR graph and parts of the rule base are displayed in the field. Moreover, since errors involving milita.y and
on a CRT screen as an AND/OR tree. A user-even an un- industrial equipment can lead to mission failures and costly
sophisticated user-can navigate the ANDOR graph, identi- accidents, all individuals responsible for the equipment (cadfy nodes to be modified, analyze the behavior of the graph, accompanying crews) must be able to verify that theverify its correctness graphically, and follow the execution of. knowledge base will continue to provide complete and accu-inference engines, rate solutions to all problems encountered. Consequently, ifa significant number of cost effective and reliable expert sys-

tems are to be generated in these environments, then both
the experts and end users should 4e able to interact directlyKeywerds: Expert systems, Man-Machine Interfaces, with the knowledge base, i.e., the interface between theAND/OR trees knowledge base and its human users must be improved.

C1 Categories: 1.2.1.1.2.4, H.1.2, 1.7.1, D.2.6 The new GETREE system3 is a workbench for exploring
the applications of AND/OR trees in an improved user inter- S
face for entering, modifying, analyzing, and documenting

INTRODUCTION rules. The AND/OR tree serves as mechanism for direct
graphic documentation of the rule-set, for explaining HOW,

In a variety of troubleshooting, design, and analysis HOW-NOT, WIlY, and WHY-NOT questions about conclu-
domains, certain individuals -- the experts -- consistently sions and facts, for displaying execution traces of forward or
outperform their counterparts in the same tasks. When this backward chaining inference mechanisms, for modifying
unusual performance derives from accumulated experience inference strategies, and for teaching the rule-base to the S
(as opposed to superior intellect or manual dexterity), that user. Most important of all, the AND/OR tree provides an
experience can be captured in an executable knowledge base effective common -graphic communications medium for all
of production rules so that other individuals -- the end users individuals involved in creating, maintaining, and applying an
-- can achieve similar performance themselves " expert system.

When working with most current expert systems, both When the tree is completed and debugged, it can be con-
domain experts and end users interact with the knowledge verted into conventional production rules, assembly

language, or high-level language for execution in more con- - 0
strained or less friendly target environments. It can also be
converted into input files suitable for fault tree analysis pro-
grams (e.g., FAULTRAN"1)

RULE-BASED INFERENCE AND EXPLANATION

Most rule-based systems have extensive, text-based trace -

and explanation facilities.' "' Nearly all expert systems pro-
vide execution traces with settable levels of detail; most can
explain HOW a particular conclusion was reached or WHY a

Originally appeared in CIlT'F3 Conference Proceedings, December 12-15, 1983,
Boston 'IA.
Copyright 19R3, Association for Compiiting "arhinery. Tnc., reprinted by permission.

415



fact was involved in an inference chain, and many can This execution trace already answers questions such as 0
explain HOW another conclusiun was NOT reached. as well "*IiOW did the system deduce FAULT-IS- Steam-Line-
as WHY a fact was NOT involved in an inference chain. Break?"; "WHY did the system ask about SG-Level-

For example, consider the following set of five rules for Decreasing?", so IIOW did the system NOT deduce FAULT-

diagnosing certain cooling system faults peculiar to the pres- ask about High-Steam-Flow?" Similar traces can be gen-

surized water type of nuclear reactors. These rules were

derived from a nine-rule example built to demonstrate the erated to answer a variety of other HOW. WHY, HOW-

REACTOR expert system'. The four possible faults located NOT, and WHY-NOT questions.

by the rules include " Loss of Feedwater," "Steam Line
Break," "Steam Generator Tube Failure," and "Loss of
Cooling Accident." Major systems involved include the Pri- These text-based explanation mechanisms give the
mary Cooling System (PCS), the Secondary Cooling System knowledge specialist a detailed view of a particular inference
(SCS), and the Steam Generator (SG). engine working with a particular set of rules and a particular

set of facts. However, they do not provide the efficient and
ulel: error-free interface that industrial users will require in the
IF PCS-SCS-Heat-Transfer-inadequate future. Such explanation traces tend to be bulky, involved,

AND and difficult to interpret, even for this simple five-rule exam-
Low-Feedwater-Flow pIe. Moreover, text-based traces provide little help in detect-

THEN FAULT-IS-Loss-of-Feedwater ing pathological interactions among the hundreds of rules

Rule2: involved in practical knowledge bases or in producing the

compact and complete documentation required for a formaliF PCS-Temperature-lncreasing system review. S
THEN PCS-SCS-Heat.Transfer-inadequate sse eiw

The AND/OR "tree" (more precisely, the rooted acyclic
tu1e.3: digraph) is used frequently for visualizing rules and inference

IF Low-Feedwater-Flow mechanisms in textbooks and papers.'"'- 1 ' All relationships
ND Iamong facts and goals are indicated explicitly by lines con-

SO-Inventory-Inadequate necting the nodes in the tree. For example, the AND/OR
THEN FAULT-IS-Loss-of-Feedwater tree for all nine cooling system rules is shown in Figure 1.

Rule4: Each terminal-node in the tree represents a fact (e.g., "Low-
IF SG-Inventory-Inadequate Feedwater-Flow") and each interior-node represents a

AND subgoal (e.g., "PCS-Integrity-Challenged") to be achieved in
High-Steam-Flow identifying a cooling system fault. Each AND-node

THEN FAULT-IS-Steam-Line-Break represents a conjunction of facts in the IF (or situation) side
of a rule (e.g., rules 1,3, and 4) and each OR-node

Rules: represents a group of rules with the same fact in the THEN
IF SG-Level-Decreasing (or action) side (e.g., rules I and 3).,

THEN SG-Inventory-Inadequate While AND/OR trees have always been convenient
tutorial devices, the high ovdrhead of initial drafting and the
continuing burden of maintaining corrections has limited

In the process of identifying a "Steam-Line Break" fault, their practical application. Moreover, since actual AND/OR
an expert system with a simple backward-chaining inference trees can easily have hundreds of nodes with multiple inter-
engine will generate the following sequence of hypotheses connections, the size and complexity of such trees have also 0
and queries. made their construction and interpretation difficult. The

GETREE system was designed to overcome these barriers
I. Attempting to deduce "FAULT-IS-Loss-of-Feedwater'" and enable the AND/OR tree to serve as a practical tool for
2. Using Rulel building, maintaining, and applying expert systems.
3. Attempting to deduce "Heat-Transfer-Inadequate" The GETREE system includes four basic components: an
4. Using Rule2 interactive graphics tree editor, a data manager for the result-
s. Is this true: "PCS-Temperature-lncreasing"? NO ing trees, interpreters running against the tree, and code gen- 6
6. Rule2 Failed erators to support more constrained target environments (see
7. gulei Failed Figure 2). It makes extensive use of visual attributes (on a
8. Using Rule3 DEC VTIOO terminal) or color (on a digital TV display) to
9. Is this true: "Low-Feedwater-Flow"? NO indicate the current node, the path to it, true/false/unknown
10. Rule.] Failed values of facts, and the execution states of inference engines.

About one hundred different node editing, text editing,
11. Attempting to deduce "FAULT-IS-Steam-Line-Break' display formatting, and inference control commands are S

12. Using Rule4 implemented.
13. Attempting to deduce "SG-Inventory-Inadequate"
14. Using Rule5 EDITING AND/OR TREES

15. Is this true: "SG-Level-Decreasing"? YES The first inclination in working with AND/OR trees is to
16. Rule5 deduces "SG.Inventory Inadeuate" build a drafting system to expedite picture drawing. The
17. Is thL' true: "High-Steam-Flow-' YES commands implemented would be picture-oriented, e.g.,
18. Rule4 deduces "FAULT-IS-Steam-Line-Break." draw-box, draw-line, erase-box, erase-line, move-box, and - S

416

1



0

PS E ETSUOE H9 C

II iURE AC "O

FINCREASING OGIYCALEG7

lFlgure 1. The Coaling System AND/OR Tree S

move-line. These commands would create a graphic data a few. Consequently, mechanisms for enabling a small CRT
base which in turn would generate a picture or the tree on a screen to display a usable tree context are a major design
CRT or hardcopy plotter. The interconnection structure of challenge. Mechanisms currently implemented in GETREE
the tree would be maintained separately by both the system include: windowing, multiple contexts, shared areas, and
and the user. hierarchical decomposition. ...

The GETREE system is actually a smart program struc- In GETREE, the CRT screen serves as a movable win-
ture editor and not a drafting system. GETREE commands dow through which a user can view any part of the tree. The
manipulate the tree structure directly and the tree picture is tree is literally "clipped oil" at the edges of the screen. The
derived from that tree structure. Commands implemented current node can be positioned at the top, bottom, middle,
include tree operations such as go-to-child, make-node, left, or right of the screen. if the screen update time can be
yank-subtree, and put-subree as well as node text operations kept under one second, then window movement can be rnTa-

such as cursor motions, yank-line, and put-line. Drafting tively transparent to the user. However, at slower speeds
commands can be used, but much of the tree formatting is (perhaps one thousand characters per second or less) or
automatic. For example, when positions or sizes of boxes when there is considerable window movement, the time
and connecting arcs are changed, the affected subtree is spent rewriting the screen can have a significant impact on
redrawn automatically to reflect the changes. Text in a node system usability.
is rejustifled automatically whenever the box size is changed. Frequently, window movement involves switching among

An AND/OR tree can be built top-down by specifying suc- two and sometimes three distinct contexts in a large tree.
cessively more detailed goals, or bottom-up by specifying con- With a sufficiently large CRT screen (perhaps 60xg0 charac- 0
clusions implied by facts, or by a mixture of the two stra- ters), each context can be allocated a separate viewport on
teaies. GFETREE provides temporary buffers for both trees the screen. With smaller screens (like the typical 24x80 char-
and text as well as permanent libraries of subtrees. Subtrees acter terminal), the entire screen is already too small to sub-
can be duplicated -- so that each copy is an independent divide so the only practical solution is multiple CRT moni-
entity -- or inserted -- so that each instance is identical in tors. The IBM PC version of GETREE supports two
content to every other instance. Text can be read into nodes separate 24x80 character screens.
from external text files and britten out from nodes into In some applications, the AND/OR trees are actually - 0
other files. A simple fill-in-the-blanks template processor hilyntroecdaylcdgapswhmny ihi-
expedites certain kinds of repetitive constructions. degree nodes. If all node interconnections were displayed

DIALING WITH COMPLEXITY simultaneously, the resulting spaghetti-like displays would be
dificult to construct and impossible to interpret. One attrac-

While the AND/OR trees encountered in practice may tive alternative to the spaghetti-like display is to "timeshare"
have hundreds of nodes, most CR1 screens van display only part of the display area amongl multiple subtrees involving

417

CHLENE



GENFEIATE HARDCOPY
OCUMENTS DOCUMENTATION

TRIEE LIBRARIES TEMPLATES

BUILD TREE FOR DAAINTERPRET USER INOUBRIES
INTERACTIVELY AND RESPONSES

PAWv EXTRACTI - "

|MACI.RS SUBSTITUTE MACROS EXECUTABLE CODE IN 0
USING UNIX M4 C, F77, ADA, RULES

MACRO LIBRARIES
FOR VARIOUS

LANGUAGEF SYSTEMS

Figural. The GETREE Proes

the same facts and the same parent node. At any point, the also read contents of nodes through a voice generation box
screen shows only the subtree being traversed and the and display images or sequences from a video disk.- .* ....

immediate children on the path to the root. When another
subtmree is traversed, the shared area is cleared so the new CODE GENERATION
subtree can be displayed. Once a tree has been created and debugged, the extensive

Finally, in other applications, the AND/OR trees lend interactive facilities of GETREE may no longer be required
themselves to a multilevel, hierarchical decomposition. At (or desired). Target environments such as embedded control
the higher levels in the tree, each node represents the root of processors or portable computers may not have the real
anofter tree which can be traversed independently. In turn, memory, memory addressability, language processors, or
the nodes of that tree could be the roots of other subtrees, CRT displays required to run GETREE. For these applica- All.
etc. With a well-chosen hierarchical decomposition, many tions, GETREE can convert the 'tree data base into a
AND/OR trees can be split into a large number of easily- language-neutral form composed of macro calls (see Fig-
managed. one-page subtrees. ure 3). With appropriate user-defined macro definitions,

these macro calls can be translated by UNIX M4 (or a similar
INFERENCE, EXPLANATION, AND INTERACTION macro) into other high-level languages or assemblers. Thus

far, simple FORTRAN, C, ADA, and ATLAS translatorsjThis basic user interface facility can also be used to have been written. S
enhance the interactive trace and explanation facilities of an ... . ......

expert system. As the inference engine runs, the affected
nodes are highlighted to show facts which have been asserted
(in forward or backward interpreters) and goals which are to MAKENODE(SG-Level) MAKENODE(AND.4)
be achieved (in a backward interpreter). A user can dynami- NODEH(4) .NODEH(3)

_NOI)EW(I2) *NODEW(S)
cally assert particulr facts and set new goals by indicating _NODIETEXT'SG Level') NODETEXT('AND')
nodes with a cursor. The user can also run the inference NODETEXT('Incressins') NODEOPT(OP194268)
engine in forward and backward modes or alter parameters in _ENONODE -NODEOPT(OP194900)
the decision strategy. MAKENODE(PCS-Intesity) fiNDNODE

For example. Figure 1 shows steps 1-15 of the execution NODEH(4)

trace for a simple backward-chaining inference engine and -NODEW(20) MAKEOPTO P19370)
the cooling system rules. Goals to be achieved are indicated -NOD ETEXT 'CIiengId') _ENDOPT

by bold boxes (or a bright red on the color display); facts
asserted are indicated by bold text (or green on a color -ENNODE S
display); and facts negated are indicated by an overwritten MAKEOPT(OP194900) NODEH(4)
bar (or red on a color display). -OPTNODE(SG-Level) NODEW(tS)

Another version of the interpreter counts the incidence of ENDOPT NODETEXT(Sieam Generator')

subgoals which cause their parent node to be asserted (or .MAKEOPT(OPi94268) _NODETEXT('Tube Failure')
negted). On subsequent executions, subgoals are executed .OPTNODE(PCS-Inegrity) NODEOPT(OPi193705)

in an order most likely to lend to a quick problem solution. _.NDOYT ENDNODE

The domain expert can initialize, query, and modify these
ounts using the standard editor. The current system can FIgure 3. Lasguage/Neutral Mae. Calla

418

• _



DISCUSSION REFERENCES

Because the GETREE system is written in the C-language [I] D.A. Waterman and F. Hayes-Roth. Pattern Directed
with calls to standardized libraries, it can be transported into Inference Systems, Academic Press, 1978.
a variety of environments. The system is now being
developed under VAX UNIX using a VTIOO terminal and [21 W.B. Gevarter, "An Overview of Expert Systems,"
the forms-drawing character set, but it also runs under NBSIR 82-2505, National Bureau of Standards, U.S. S
VAX/VMS and VAX/EUNICE+ using either a VTIOO ter- Department of Commerce, May 1982.
minal or a high-speed, direct memory access color graphics (3) J.W. Lewis and F.S. Lynch, "GETREE: A Knowledge
display. Another version runs under PC-DOS on an IBM PC Lewisend FoS. Lnc oGE Tre nwledg
(and some of the plug compatible portables) using either the Management Tool," in Proceedings of the Trends and
color graphics board or the monochrome display board. The Applications Coference on Autonating Intelligent
GETREE system is now being delivered to several General Behavior, IEEE Press, May 1933.
Electric Company operating components for use in construct- (41 D.B. Wheeler, J.S. Hsuan, R.R. Duersch, and G.M.
ing various field prototype expert systems. Roe, "Fault Tree Analysis Using Bit Manipulation,"

IEEE Transactions on Reliability. R-26, 2 (June 1977)A major benefit of this interface-driven approach to 9-9

expert system development is the enhanced visualization of

the workings of inference mechanisms. A researcher can see (5) E.H. Shortliffe, Computer-Based Medical Consultations:
immediately the effects of changes in decision strategies or AtYCIN, Elsevier, 1976.
system organization,' an end user can learn the knowledge (61 P.P. Boniisone, "An Expert System for Troubleshoot-
base and develop confidence in it by verifying the logic as it ing," NAFIP-I, Utah State University, May 1982,
runs; and the expert responsible for the knowledge base can Ln, Uah.
locate and correct conflicts and missing logic by examining Logan, Utah.
the graph directly. Moreover, neither users nor experts [71 W.R. Nelson, "REACTOR: An Expert System for
require much training in "rule programming" because the Diagnosis and Treatment of Nuclear Reactor
workings of the rule interpreter are obvious from the CRT Accidents," In Proceedings of AAAI-82. American Asso-
display. ciation for Artificial Intelligence, August 1982.

GETREE is now run regularly in conjunction with an ear- 181 P.H. Winston, Artficial Intelligence. Addison-Wesley,
lier expert system (now deivered to the field) to demon- 1979.
strate how its inference engine works. GETREE has also (91 A. Barr and E.A. Feigenbaum, The Handbook of
been used in developing and demonstrating an adaptive ArticialIntelligence, William Kaufman, 1981.
inference algorithm which "learns" from experience the
optimal order in which to execute the AND/OR tree. [101 N.J. Nilsson. Principles of Artificial Intelligence, Tioga

Publishing Company, Palo Alto, 1980.
ACKNOWLEDGEMENTS 1111 J.W. Lewis, "TREE: An Interactive Editor for Tree

The original TREE system ." grew out of discussions Structures;" Computers and Graphics 1 (1975) 70-73.
with A.J. Perlis of Yale University. The application to rule- (121 J.W. Lewis, "ALBE/LNF: A Language-Based Editor
based systems was triggered by more recent work with for Language Neutral Form," In Proceedings of the
F.S. Lynch, P.P. Bonissone and L.W. Bauer of General Elec- F fth International 'onJerence on Software Engineering.
tric Corporate Research. Last spring the system was January 1981,1IEEE Press.

extended considerably by RIJ. Plevin and L. Fairchild. This
summer B. Papernik and R. Cowan joined the implementa- 1131 N. Meyrowitz and A. Van Dam, "Interactive Editing - S
tion team for further work on the user interface, tree draw- Systems," Computing Surveys, 14, 3 (Sept. 1982) 319.
ing, documentation, and video disk driver. 415.

419



CV) THE ACE EXPERIMENT: Initial Evaluation

0') of an Expert System for Preventive Maintenance

(V') Frederick D. Miller, David H. Copp, Gregg T. Vesonder,

o and John E. Zielinski

0.' AT&T Bell Laboratories, Whippany, New Jersey!

1. Introduction

ACE (Automated Cable Expert) is a knowledge-based system designed to
direct preventive maintenance activities in the local telephone
network. ACE was developed at AT&T Bell Laboratories to demonstrate
and evaluate the potential for using expert systems technology in
cable maintenance.

The paper will describer#he role of ACE in the maintenance process and
witt discuss-- ,the methods used to evaluate ACE's performance in the
field. Some general issues for the evaluation ofexpert systems also
will be considered.

2. ACE as a Maintenance System 0

Most of the expert systems described at this workshop (for instance
[1] and [21) are consultative systems that provide advice to
craftpersons who are repairing malfunctioning equipment. ACE plays a
different role in the maintenance process. ACE selects equipment for
preventive maintenance by analyzing historical data on problems in the .
loop telephone plant. ACE suggests preventive maintenance that should
be performed to reduce the likelihood of customers experiencing
cable-related problems with their telephone service.

Additionally, ACE differs from most previous expert systems in that it
gathers information to analyze from a database system, rather than
through interaction with users or domain experts. ACE has access to a 0
database where the operating telephone companies store telephone cable
repair activity records. ACE uses these data to determine the
existence of faults, their probable nature and cause, and their
severity. ACE relays this information to users who determine when
problems will be repaired.

ACE's analysis task is ordinarily assigned to an "analyzer" who uses
reports from the database system. These analyzers have :idely varying
expertise concerning the telephone plant and computer based analysis.
Given both the volume of data available to analyze and other demands
on the analyzers' attention, even the best analyzers often lack the

421



time to complete the analysis job or do it well. An expert system
that represents a highly skilled expert's understanding of both
telephone faults and computer based analysis methods can perform its
tasks free from the limitations that hinder analyzers.

ACE's knowledge base and inference engine are written in Franz Lisp
(3] and the OPS4 [4] production system language, runnir.g on a VAX S
11/780. ACE's support routines, including its interface to the
database system and the electronic mail that sends output to users,
are written in UNIX* shell and C. For a detailed description of ACE
see Vesonder et al. [5].

3. Evaluation Methods

ACE has been field tested in several telephone company locations for
more than a year. Initially, system performance was tested formally.
After that, local cable analyzers were given daily access to ACE
results, which they have used for cable repair. These users have been -
interviewed in depth about the system and have made many suggestions •
which have been incorporated into ACE. These two procedures are only
a part of the evaluations to which a complete project should be
subjected.

Evaluation is not a single process. As the recent paper by Gaschnig et
al. [6] points out, evaluation occurs throughout the development of an
expert system. For instance, each iteration of a rule set is based,
in part, on the developers' evaluation of the previous state of the
rule set. This paper will focus on the tasks that are specific to
evaluating an expert system for a commercial application. There are
four major subtasks in the evaluation of such systems.

1. Evaluating the accuracy of the system -- to decide whether the S
system meets the standard of accuracy, or expertise, at which
commercial deployment of the system would be feasible. This is
somewhat different than evaluating accuracy in order to improve
the rule base, purge it of all inaccuracies, or determine if the
software provides an accurate model of human decision making.
Commercial systems have to be good enough for their application.
As the cost of additional improvements in accuracy begins to
rise steeply, some possible improvements may not be made in a
commercial system. Additionally, commercial systems need make
no claims to mimic human thought processes. They only need
mimic correct outcomes of inference processes.

UNIX is a trademark of Bell Telephone Laboratories.

42

422



2. Evaluating system sizing and the performance of hardware and 0
software, to find the lowest cost implementation that can
provide adequate performance for the application.

3. Evaluating the quality of human/computer interaction.
Commercial software can only be deployed successfully if system
users are willing and able to work with the software over a long 0
time period.

4. Economic evaluation. Does the action carried out by the system
justify the costs of hardware, software, training and
maintenance?

The ACE test focused on the first of these four concerns -- proving 0
that a rule based expert system could attain an adequate level of
expertise for the application. Since ACE was deployed as a prototype
system for testing, it would not have been appropriate to evaluate the
other three issues using ACE.

The question then is how to evaluate whether an expert system is 0
accurate enough to allow its being deployed in a commercial
application?

Evaluation starts with a critical methodological choice -- the
selection of the standard against which the system is to be measured.
This is difficult when evaluating expert system accuracy because . ..
expert systems are applied to domains in which it is not easy to 0
ascertain correct answers or in which there is disagreement about what
the correct answer is. After all, one would not bother to build an
expert system in a domain in which problems have straightforward
solutions. Even when tests that could evaluate the expert system's
answers objectively are possible, the tests are often expensive, time
consuming or difficult to perform. .

In evaluating ACE, one's ability to do objective tests is limited both
by cost and time -- since many hundreds of cables would have to be
checked individually -- and by limits on how much the expert system's
domain can be manipulated, since the telephone company would object to
a wholesale digging up and examining of cables to check whether ACE
was right about them. A similar argument can be applied with greater 0
force when medical expert systems are being evaluated.

In the absence of an objective measure against which to gauge system
performance, expert system judgements have to be compared with expert
judgments. If the judgments of experts in a domain display a high
degree of consensus, or if one person who is universally recognized as
an expert can be recruited, then the system can be compared against -

that person. Unfortunately, again, expert systems will tend to be
built in domains where experts disagree. One major problem in
knowledge acquisition is developing methods to reconcile the
conflicting views of domain experts (7).

423

-9



In a domain where disagreement among experts is the norm, there never
will be complete agreement between the judgements made by expert
software and those made by a group of disagreeing experts.
Additionally, the disagreements among experts point out that the
experts themselves are imperfect and at times inaccurate. As a
result, the question of what standard to compare an expert system
against must be restated to encompass the issue of how accurate does S
the expert system have to be, given a domain in which inaccuracy -- or
at least lack of consensus between experts -- is tolerated?

The solution to these problems that was adopted for testing ACE was to
allow the degree of agreement between human analyzers to establish a
target for ACE's accuracy. The criterion established for ACE was that
ACE's agreement with human analyzers should at least equal the 0
agreement between the analyzers themselves. From the customer's
standpoint, expert software meeting this criteria should be
indistinguishable in performing a task from a random sample of
analyzers presently on the job. If software exceeds the criteria-- in
other words by showing a greater degree of overlap with analyzers than
is attained between the analyzers themselves-- there would be some
basis for assuming that the expert system could outperform the average
expert in this analytic task.

4. A Method For Evaluating Accuracy

Accuracy can be assessed by comparing the outcomes from the expert
software with the outcomes from live experts in a domain. (For a
somewhat different approach to making these comparisons, see £81.) ACE
was tested by having ACE and four telephone company analyzers each
analyze a monthly body of telephone trouble reports on the same data
base. This procedure was repeated for three months. All the
experimental subjects were given the same task -- to rank order the 0
most serious candidates for preventive maintenance in several ....
geographic areas each month. The analyzers were instructed to use the
database system that stored information on those areas following the
procedures they would ordinarily use. They also had varying degrees
of personal knowledge of the geographic areas under study. ACE had
access to the same database and used a rule base developed to mimic
the test analyzers, as well as other analyzers and standard telephone - S
company analysis procedures.

The analysts were given no time or machine limits on how much effort
they could put into their analyses. They were told to work on the
problem as if they were doing the analysis as part of their normal job
function, and their time working on the ACE test was assigned as part
of their jobs. (For two of the analyzers, the areas being analyzed -

were part of their actual analysis job each month.) The analysts had
deadlines at the end of each month when they would meet with the
system designers to present and discuss their findings. The analysts
knew that their findings were being compared with ACE, though they had

424

S



S

no access to ACE's results during the test. It was after this three
month test period that users started to receive daily ACE output to
work with.

There are several ways in which this data collection methodology was
less than optimal, but non-optimal research conditions are a way of
life in field evaluation. The larger the sample of human analyzers
the better, since larger samples give better estimates of actual
values for a population. For similar reasons, the longer period of
time that data are collected, the better. It would have been
preferable to work with analyzers who did not have personal knowledge
of the cable plant in the study area. Such human subjects would have
been more closely analogous to ACE as an analyzer. In defense of this S
method, their local knowledge should have given analyzers an advantage
in comparison with ACE. In addition, it would have been preferable if
analyzers had not known that they were being compared with an expert
system -- to eliminate any unforeseen effects from people knowing that
they are being compared with an expert system. However, there had to
be some explanation for our asking so many telephone company analyzers
to analyze the same data, and we never explored presenting any
explanation but the honest one.

The statistical analysis of the resulting data is relatively
straightforward. Rank order correlations were calculated for each
instance where two people, or one person and the expert software
provided rankings of the same body of data. It is not necessary to •
have ranking data. If judgments have been made on an interval scale
(such as calculations of trouble seriousness) then product moment
correlations can be calculated. Alternately, if the judgment is as
simple as whether the same items were selected by different experts,
coefficients of association can be used. The groups of person-to-
person and of person-to-machine comparisons were then combined, using
Fisher's r to z transformation to normalize the data. This provided
two average correlations, person-to-person, and person-to-expert
system, which could be compared statistically with an ordinary t-test.

The statistical results of the ACE test are proprietary data held by
AT&T Bell Laboratories and so cannot presented here. It can be stated
that ACE's performance strongly supported the notion that expert 0
system technology could be used in preventive maintenance.

One methodological caveat should be mentioned. When a small sample of
analyzers is used, a single person who does poorly can bias results
strongly in favor of the software. Consider a test between software
(S) and three analyzers (A, B, and C). The machine-person comparisons
would be based on three correlations: S-A; S-B; and S-C. The person-
person comparisons also would rest on three correlations: A-B; A-C;
and B-C. If one of the people were widely divergent, that person
would have a greater impact on the person-to-person correlation than
on the person-machine correlations, since the person would appear in
two of the former, but only one of the latter. This can be corrected

4

425

0



for, by watching the data for outliers and analyzing data both with
outliers included and excluded to assess the effect such individuals
are having on the results.

5. General Considerations

The method described above can, with small adaptations, be used to
"prove in" expert systems, at least to the point of testing whether
the expert system is competent in its domain. Competence here implies
that the system is at least as accurate as well qualified human
experts. What does this test imply for the more general realm of
expert system evaluation? Consider those tasks mentioned above that 0
have not yet been completed for ACE.

1. Testing to optimize ACE's accuracy and knowledge base. The
testing described above demonstrates that an expert system is
capable of assuming a place among domain experts. Further
improvement of the system requires the type of testing described .
in (6) -- taking ACE results to the field to find out if they
are accurate. When the system proves inaccurate, the software
has to be modified accordingly. This iterative process of
improving the knowledge base is a major part of building an
expert system. A test method such as was used for ACE can
provide a basis for deciding when such development efforts can
be stopped. .

2. The ACE test did not include load or performance tests, nor
evaluation of the human interface, because the ACE prototype was
not regarded as a system ready for product deployment. An
interesting issue is whether these issues can be tested the way
they are in other computer systems, or whether special
considerations will need to be made for expert systems. The
area where this is most likely is the human interface, where
users have to be able to understand system outcomes and may
require some reassurance about where control of the interaction
lies.

3. System economics was not evaluated for ACE. Again, ACE was a S
prototype not a product, and hence economic evaluation was not
appropriate. But the methods used here may provide a basic
target that must be attained before an expert system can be
proven in economically. The methods for economic evaluation are
far afield from the methods described in this paper.

426

-"



6. Conclusion

The domains in which expert systems prove useful are precisely those
in which it is difficult to assess the accuracy of software, because
of the lack of means for assessing judgments objectively and the lack
of agreement in subjective judgments. This paper describes a method
that was used to assess expert system accuracy in such a domain, by
using the level of agreement attained by a group of human experts as a
target for the agreement with human experts that had to be attained by
software. This provides a method for demonstrating the validity of
expert software to potential users, and provides data that can be used
in other aspects of system evaluation.

REFERENCES

(1] Cantone, R. AI Applications to Automatic Testing. Paper
presented to Joint Services Workshop on Artificial Intelligence
in Maintenance, Oct. 4, 1983, Boulder, Colorado.

(2) Bonissone, P. AI Maintenance Applications at General Electric. .

Paper presented to Joint Services Workshop on Artificial
Intelligence in Maintenance, Oct. 4, 1983, Boulder, Colorado.

[3) Foderaro, J.K., The FRANZ LISP Manual. Computer Science
Department, University of California, Berkeley, 1979

(4] Forgy, C., and McDermott, J. OPS, A Domain-Independent

Production System Language, 1977, IJCAI 5, 933-939.

(5] Vesonder, G.T., Stolfo, S.J., Zielinski, J.E., Miller, F.D., and
Copp, D.H. ACE: An Expert System for Telephone Cable
Maintenance. Proceedings of the Eighth International Joint
Conference on Artificial intelligence, (1983), Karlsruhe, West .
Germany, Vol. I, 116-121.

[6) Gaschnig, J., Klahr, P., Pople, H., Shortliffe, E., and Terry,
A. Evaluation of Expert Systems: Issues and Case Studies, In
Hayes-Roth, F., Waterman, D.A., and Lenat, D.B. Building Expert
Systems, Addison-Wesley, Reading, Mass., 1983.

[7] Reboh, R. Extracting Useful Knowledge From Conflicting
Expertise. Proceedings of the Eighth International Joint
Conference on Artificial Int elligence, (1983), Karlsruhe, West
Germany, Vol. I, 145-150.

(8] Yu, V.L., Fagan, L.M., Wraith, S.M., Clancey, W.J., Scott, A.C.,
Hannigan, I., Blum, R.L., Buchanan, B.G., and Cohen, S.N.
Antimicrobial Selection by a Computer: A Blinded Evaluation by
Infectious Disease Experts. Journal of the American Medical
Association, 1979, 242, 1279-1282.

4 2_

427

L _,



ABOUT THE AUTHORS

Frederick D. Miller is a member of the Artificial
Intelligence Systems Group at AT&T Bell Labs, working on
design, development, and deployment of ACE. He received 0
his Ph.D. in social psychology from Harvard.

David H. Copp is currently doing Al reserach for the
Central Services Organization. He received his Ph.D. in .
electrical engineering and computer science from the 0
University of California, Berkeley. He has worked on
computer performance measurement, microprocessor
design, expert systems, and co-authored a high school
programming text.

Gregg T. Vesonder is supervisor of the Artificial
Intelligence Technology group at AT&T Bell Labs. The
group's major responsibility is applying artificial
intelligence techniques to integrated information systems.
He was one of the chief designers and developers of ACE. -

Dr. Vesonder received his Ph.D. degree in cognitive . .
psychology from the University of Pittsburgh/Learning
Research and Development Center. He is a member of the
IEEE Computer Society, the American Association for
Artificial Intelligence, and the ACM.

John Zielinski supervises the Al Systems Group at AT&T
Bell Laboratories which is responsible for the development
of the ACE system. He is a member of the American
Association for Artificial Intelligence.

428

( S



IJ"r A a f -r± Ly~ £r £1~jezcnic 1a nalncD

by

T. J. Laffey

W. A. Perkins

Oy~0. Firschcin* 0

0
0 0/52-53 B/201

Lockheed Palo Alto Research Laboratory .

3251 Hanover Street

Palo Alto, CA. 94304

ABSTRACT

Existing Automatic Test Equipment is often inadequate for quickly
isolating component failure in large electronic systems. The
Lockheed Expert System (LES) has been designed to guide -

leno-experienced maintenance personne!l in the fault diagnosis of .
electronic systems. LES uses not only the kncewldge of the expert
diacnostician (captured in the familiar form of !F-THEN-4rules),
but als.o knowledge about the structure, function, and causal
relations of the device under study to perform rapid isolation of
the r odule causing the failure. In addition to aiding the
engineer in troubleshooting an electronic device, LES can also
explain its reasoning and actions to the user, and can .ovide AS
extenie_.atba:e retrieval and graphics capabilities." In' this
paper we wil'" discussrs the application of LES to a large
signal-switching network containing Built-In Test Equipment
(BITE). By adding rules, database information, and a few special
procedures to the general LES framework, we were able to have a
working system in a much shorter time (four man-months) than would
have been possible starting afresh.

Now at SRI International, Menlo Park, California 94025.

429

_-S



1.0 INTRODUCTION 0

The final report of the OSD/IDA Reliability and Maintainability
study [I] emphasizes the importance of developing expert
maintenance systems for use where existing Built-In-Tcst (BIT) and
Automatic Test Equipment (ATE) have been inadequate. Existing ATE
often use inflexible sequential test programs and BIT systems
often produce a large number of false alarms. To eli,,inate these 0
probleins, we have applied LES, a general rule-based expert syste:i,
to finding faulty modules in electronic systems. LES is similar
to E14YCIN [2], in tihat it is a framework for building expert
systems, but is riore powerful in that it makes use of knowledge
about the device to aid it in its troubleshooting. Many expert
systems, like MYCIN [3], have been constructed from large
collections of empirical observations of the expert. It was clear .
from the beginning of this project that such an approach could be
improved greatly by using a detailed model of the structure and
function of the device under test, allowing LES to reason about
how the device works, and how it fails, in a manne similar to the
experienced engineer who would perform the troubleshooting.

Constructing and using a model of this type makes an expert system
much more "intelligent" because it is able to provide the system
with a more fundamental understanding of the device than is
possible using the traditional approach. The Importance of LES is
that it can reason about electronic devices, understanding how
they work and how they fail.

In this paper we will descr5be how we represent an electronics --•
system in LES, and will indicate how LES is able to combine its
knowledge of fault diagnosis (derived fromi the expert in the form
of "IF-.THEN" rules) with its internal representation of the
electronic device to become a very effective troubleshooter.

2.0 PROBLEM: FAULT ISOLATION IN THE BDS

The electronic device LES is currently being applied to is a large
signal-switching network which we will refer to as the Baseband
Distribution Subsystem (BDS). It accepts up to 40 baseband input
signals and connects them, under computer control, to any one of
up to 304 baseband signal output ports. The BDS structure allows
connection of any one of its 40 input signals to any one or a
combination of all of its 304 output ports with essentially no
signal degradation (under normal operation). The BDS consists of
16 equipment cabinets, a terminal, and a line printer.

The BDS also contains Built-In Test Equipment (BITE) which allows
the maintenance engineer to break conncc:tions and set switches at
various points to test for the presence of a signal. This is
accomplishcd by entering operating commands at the local
operator's console to control the BDS. One example of such a

430

. ft. . _



6

command is: 0
TCS, 4 , N/AM

which tells the BDS to send a test signal from the synthesizer
along input line 4, in 1O-ADD mode, and give a meter reading.
Although BITE is a definite aid in the troubleshooting process, it
has several shortcomings. From the above example, one can see
that the LITE commarxs are cryptic (no blank spaces are allowed)
and difficult to understand. 1'7ith approximately 30 commands (each -
command hving four or five different forms), it is extremely
difficult for the maintenance engineer to remember even a fraction
of these commands. Often, BITE will print diagnostic messages
designating a set of components to be checked out. The problem is
that it does not desj.ciu:te one component, but usually more than
ten. Furthermore, there are often no faulty comporents in the set
desigrnatr,d by BITE. Our expert troubleshooter usually ignores S
such BITE messages because they gives excessive false alarms.
Also, BITE fails to identify certain types of problems which occur
in the EDS, such as a loose cable. Finally, the major flaw of
BITE is that it actually has "bugs" in it which are very difficult
to modify, so they are not corrected very often. These problems
lead to long maintenance times with the BDS out of action and
resources wasted on unnecessary or ineffective maintenance S
actions.

The purpose of LES is to perform corrective maintenance on the BDS
by performing rapid isolation of a faulty printed circuit board or
other ch:ssis mounted piece part which caused the failure. The
faulty rcdule way be any one or more of the approimately 3000
printed circuit boards, 1000 cables, or other devices which make--
up the BDS. Such a large collection of components makes the fault
diagnosis a very complicated task.

3.0 METBOD USED FOfl SOLUTION

In the following subsections we will discuss how LES models an
electronic device, how the knowledge of the exp ert is captured,
the goals which the system is pursuing in the solution of the
problem, and finally how special problems are handled. In trying
to represent the BDS, we generated the block diagram of Figure 1
which shows typical signal paths through the BDS. Surprisingly
enough, no such diagram existed previously, and it required . 0
numerous discussions with the expert and many hour of studying
manuals to obtain it.

431



0 L0Z

11 <0tc

I-.-
I 0m

F It
-. c 0009-----

'UU
00 6

i hS

I' X

II Iz
B4 a 4555 z~w 4-4 ~s. ss~s s~ as-'m

U)u

0 P. 994M Z~ms -4 c~

CO) 432

bg z W



3.1 Modeling An Electronic Device

Obtaining a satisfactory internal representation of the BDS, or
other electronic device, requires a complex description. LES
represents the structure of the electrical connections and
properties of all the components in an "attribute database" (or
frae structure) [4-6] vith excellent results. This knowledge
representation also allows for extensive database retrieval •
capabilities. The computer system has a distinct advantage over a
human repairman in that it can instantaneously list all the
componeints and their locations from a given pair of input and
output connections. The repairman, on the other hand, must study
wiring diagrams or hope his memory is correct. This is often a
time-consuming task and can lead to many wasted hours of valuable
personnel.

For the BDS application we chose a set of categories and a set of
attributes for each object. Some examples of categories are
printed circuit board (card), cable, frequency synthesizer, and
spectrum analyzer. Typical attributes of these objects include
its name, location, whether a signal passes through it or not,
where it gets the signal from, where it sends the signal to, what
its supporting components are, whether it's a testable point (i.
e. can the user break the connection there and test the signal
presence using an analyzer?), its likelihood of being faulty,
etc... It is essential that the set of objects and attributes
chosen be sophisticated enough to allow LES to use its internal
model of signal flow in one direction through a set of nodes
(electronic devices) to aid it in its fault diagnosis. Below, we
show how a typical object may be represented in LES.

(CARD

(NAME '16xl switch')
(TYPEOF '16xl card')
(LOCATION 'cabinet 302 Al A4 A20')
(FAULT'Y-LIKELIHOOD '0.1')
(SIGNALPASSING 'TRUE')
(ELECTRICALLYCOmNECTEDINPUT 'CARD(NAME = Ix16 buffer)')
(ELECTRICALLY_CONIIECTEDOUTPUT 'CARD(NAME = 8x1 second-level)')
(ELECTRCALLYSUPPORTEDBY 'CARD(NAIE = 16x16 matrix)')
(ELECTRICALLYSUPPORTS '')
(IIASFAIJLTLIGHT 'TRUE')
(TESTABLE IflPUTQPOINT 'FALSE')
(TESTABLEOUTPUT_POINT 'TRUE')
(GIVESALr.a}d 'FALSE')
(PURPOSE 'to accept baseband input signal

from 1x16 buffer card and
connect it to its baseband
signal ouLput')

433



This representation is interpreted as follows: the object is in
the card catec.ory, it is a type 16xl card, locatcd in cabinet 302 0
in section Al IA4 A20, it has a likelihood of failure of 0.1,
signals pass through it, its input signal cones from a lxl buffer
control card, and it sends its output signal to a 8x! second-level
switch card, it is supported by a 16x16 matrix control card, it
does not support any Cevices, and cannot be tested with an
analyzer on its input but may be tested on its output. -

Each component in the DDS is represented by a similar structure.
How(ever, in order to limit the size of our data structure, we
represent only those conponents which could possibly be faulty.
This is determined at runtime by the diagnostic ressages which are
output by BITB when the BDS fails (see sample session). This
reduces the number of compenents we need to repreSent from
approximately 4000 modules to about 100 (see Figure 1). •

Using its knowledge that a signal flows through devices in one
direction, tog:ether with the attribute database, LES is able to
identify the set of components along which the signal passes and
find appropriate points to test for the presence of the signal.
Initial attempts to program a binary search in which a spectrum - .
analyzer tests for signal presence along a signal path was 0
unsuccessful in this application because there were few accessible
test points. Instead, the expert used special kncwledge for each
component, which we encoded in the form of "IF-THmI" rules. In
the next section we describe how LES represents the knowledge of
an expert troubleshooter in the form of these rules.

0

3.2 Rules About Fault Diagnosis

The knowledge of the expert at troubleshooting the BDS, is
captured in the form of "IF-TIHEN" rules. There are currently
about 50 rules which have been derived by working with the expert,
with more being added as the system is checked out. These rules -
are mostly special cases which allow the engineer to use more
knowledge in troubleshooting the system than our simple cdel
allows. Examples are how to set switch positions to troubleshoot
more efficiently, which components contain easily recognizable
signs of fail,:re such as fault lights, and other similar
exceptions to the general case. Other rules involve the necessary
BlTE commands to obtain test results. _

An example of such a special-case rule is: "IF the signal is
prei;ent at the input regulaLor card, AND the signal is distorted
at the lGxl switch card, TPEV the Ix16 bufter control card is
faulty." This rule clearly does not fit our more general model of
a component being faulty if the signal passes into but does not
pass out of it.

The rules are represented in LES by the "case grammar" format [7].

434

.I.. 2



Although case gr-,,:,ar has been used for representing natural
language (81 and for attribute htabases, LES is the first system 0
to use this structure for expert system xrulca. The rule mentioned
in the preceding paragraph is represented in LES as follows:

I I': TYPE_ENTRY 'STATE'
ACTOR ' IN1PUTSIGNALP1, -SENCE [CARD (NAME input regulator))'
ACTIONVERB '='
OBJECT IRUE '
RULE_NAME 'RULE031l'

AND: TYPLENTRY 'STATE'
ACTOR 'OUTPUT_SIGNAtLPRESENCE[CARD(NAE = 16xl switch)]'
ACTIONVERB '='
OBJCT 'distorted'

THEN: TYPEENTRY 'STATE'
ACTOR 'FAULTY[CARD(NAME ix16 buffer)]'
ACTION_VERB '='
OBJECT 'TRUE'
LIKELIHOOD '100'

The case grammar format for rules is consistent with the format of
the attribute database. As noted recently by Davis [9], it is
desirable to have a few general representations instead of many
special representations in order to reduce the problem of
translating from one representation to another. Although this
structure is more elaborate than that used in other expert
systems, it provides greater versatility in describing the
relationship between objects under analysis. The information
contained in one set of slots is essentially that of one clause
(e.g., subject verb object). Ordinary sentence information is, of
course, much easier for the comruLer to understand if it is in the
slot format, since the sentence is already parsed.

Variables can also be represented quite easily in this format.
For example, the rule: "IF a signal is present at the input to a
card, AND the signal is not present at the output of the same
card, THEN the card is faulty," is represented in the case grammar
format as follows:

IF: TYPE_ENTRY 'STATE'
ACTOR 'INIU "_SIGNAL_PRESENCE[CIARD(NAME= ?x)]'
ACTION _VERB '='
OBJECT 'TRUE'
RULE_NAME 'RULE001'

AND: TYPE_ENTRY 'STATE' -
ACTOR 'OUTPUT_SIGNALPRESENCE[CAD (NAME ?X)]
ACTIONVERB '='

435

-9



OBJECT 'FALSE'

THEN: TYPEENTRY 'STATE'
ACTOR 'FAULTY[CARD(NAI'E =?X)'
ACTIONVERB '='
OBJECT 'TRUE'
LIKELIHOOD '100'

In this rule, "?x" is the variable and can be bound to any object
of type CARD. We can bind these variables even tighter by using a
form such as:

CARD(NAME = ?x & CONTAINEDINSIDE = CABINET(NAME = switch cabinet)).

Now the variable ?x can only be bound to a card which is contained 0
inside the switch cabinet. Other systems, such as EMYCIN, have
difficulty in cleanly providing such context capability.

In the next section we discuss how LES determines which rules to
use in performing its electronic fault diagnosis.

3.3 Reaching The Goal In Electronic Diagnosis

As mentioned earlier, LES is a goal-driven, backward chaining
system, like EIYCIN. Instead of a backtracking mechanism,
however, the standard AND/OR trees [10] are used to represent
goals. Initially, the program sets up several goals (each
involving the hypothesis that one of the components along a
certain path is faulty) with different priorities. Depending upon
the results of tests, which indicate the presence of signals, LES
will automatically switch goals by increasing the priority of a
goal which looks more promising. For example, if there is no
signal present at the first test point, then a rule "fires" which
requests the operator to check a specific signal path by setting -
switch positions. If no signal is present on this path, then
finding faulty components along this path beconies the highest
priority task.

Each goal has a subject category that defines a set of rules which
apply to that goal. Thus, the system uses only the pertinent set
of rules when working on a particular goal. For this problem, one
set of rules is used for diagnosing and another set for repair.

In the next section we discuss how LES is able to handle the
special problems which come up in troubleshooting the BDS.

436



........ - - -
: ' •  

• • : • f :• • • • • f 
- -  

, . . . . . . • - _ _ _ • - - • . -

3.4 Procedures For Handling Special Problems 0

Extensive calculations or complex processes cannot always be dealt
with effectively using rules. These cases are handled better by
an ordinary procedure or subroutine. Thus, we have added the
capability for LES to call procedures as needed in achieving its
goals. Procedure calls are treated as follows: To satisfy a leaf
node of the AND/OR tree, the system needs some attribute to have a
particular value or range of values. if none of the rules are
directly applicable, the program looks for a rule whose "THEN"
part states that the value of this attribute "is determined." (The
"IF" part will state, "If you call sorie procedure"). Next the
program looks for preconditions (in other rules) which must be
satisfied before this procedure can be called. If none are found,
the procedure is called. If some preconditions are found, they
are added as new leaf nodes or. the subtree. (Note that firing of
this rule, which involves calling the procedure, is not guaranteed
to result in the leaf node becoming "true"). LES continucs until
it can prove the hypothesis "true," "false," or "unknown."

4.0 SAMPLE SESSION

The following transcript illustrates LES's interaction with a user
and the nature of the advice provided. User responses are
preceded by "USER:" and annotations are in brackets [I.

WELCOME TO THE BDS TrOUBLESHOOTING CONSULTANT 0

[System sl-arts out with an introductory message
and a brief explanation of the system which we
omit to save space]

Enter command (HELP for options)

USER: DIAGNOSE

O.K., let's go isolate the failure in the BDS...

[LES now instructs user to look for some obvious failures,
then helps him use BITE to set up the test equipment
properly, which we omit to save space]

[LES now helps user select an input/output connection, so he
can begin his fault isolation]

Enter "SS" <CR> at the BITE console to obtain the EQUIPMENT OUT OF
SERVICE TABLE.

Examine the set of lines in the INPUT list (not ADD-IN) for lines
which are normally not there.

437

D _S



What is the lowest numbered input line which is normally not in the S
table? (enter HELP for list of lines usually there, enteL NONE if
none exist)
USER: 4

Enter "SC" <CR> at Lhe BITE console to get the BDM CONNECTION STATUS
table.

Enter an output line which is currently not dedicated (i.e. does not
show up in table) (0 to 319).
USER: 46

[LES now helps user use BITE to run a test path]

RUN A TEST PATH S

You now need to check the Normal Path (through PM, SM and SV).

[See outer path in Figure 1]

Enter "CN4,46" <CR> at the BITE console to connect input 4 with
output 46. .

*Enter "TIS,4/N" <CR> at the BITE console to send the test signal
from Synthesizer A along input line 4.

Enter "TON,46/A/M" <CR> at the BITE console to send the test signal
along output line 46 to !;etwork Analyzer (channel B).

You must compare the signal detected by Network Analyzer (channel B)
at cabinet 300 Al A8 with that generated by Frequency Synthesizer A
at cabinet 300 Al A6.

If the signal is flowing correctly through the path, the signal
detected on the network analyzer should cancel the signal gencrated
by the synthesizer, giving a meter reading in the range -60 to -90
dBm.

Is the meter reading in the -60 to -90 dBm range? (Y or N)
USER: N

[LES suggests another test path to run]

RUN A TEST PATH

You now need to check the Primary Path (through PM and back to CT).

[See top (NO-ADD NODE) path in Figure 1]

Enter "TCS,4/N" <CR> at the BITE console to send the test signal _
from Synthesizer A through Test Calibrate Path to Network Analyzer
(channel A).

438



You must compare the signal detected by Network Analyzer (channel A) 0
at cabinet 300 Al A8 with that generated by Frequency Synthesizer A
at cabinet 300 Al A6.

If the signal is flowing correctly through the path, the signal
detected on the network analyzer (channel A) should give a meter "--
reading within 5 dBm of frequency synthesizer A's setting of
-35 dBm. •

Is the meter reading in the -30 to -40 dBmi range? (Y or N)
USER: Y

ILES now selects a good test point and asks user to use a
mobile piece of tes;t gear, the spectrum analyzer] . .

USE SPECTWU ANALYZER

You now need to connect the spectrum analyzer to Input
Connector/Regulator Card at cabinet 302 Al AS A18 (jack 12) and
compare the signal detected with that generated by Frequency
Synthesizer A at cabinet 300 Al A6.

First, you must connect the spectrum analyzer to the input of the
Input Connector/Regulator Card.
USER: WHY

[User asks why LES is suggesting this test, and the system
explains its line of reasoning] -

If we can:
(1) sho: that INPUT._SIGNAL_PRESA' CE of Input Connector/Regulator

Card is TRUE;
and

(2) show that OUTPUT_SIGNAL_PRESENCE of 16X1 Switch Card is
DISTORTED;

Then it follows from Rule 31 that:
FAULTY of IX16 Buffer Control Card is TRUE.

Does the signal detected by the spectrum analyzer agree with the
generated signal? (Y or N)
USER: Y

NOTE: Please disconnect the Spectrum Analyzer from the Input
Connector/Requlator Card at cabinet 302 Al A5 A18 (jack 12) and
secure the old connection.

[LES suggests another test point)

USE SPECTRUM ANALYZER

You now need to connect the spectrum analyz-er to 16X1 Switch Card
at cabinet 302 Al AS A33 and compire the signal detected with that

439



generated by Frequency Synthesizer A at cabinet 300 Al A6. 0

First, you must connect the spectrum analyzer to the output of the
16X1 Switch Card.

Is the signal detected by the spectrum analyzer: Distorted, Missing
completely, or Present and good (D, M, or P)?
USER: INFO

[INFO takes the user into the database retrieval mode, where the
user can type in English type questions which LES will try
to answer]

What is your question? (enter H1ELP for options)

USER: WHERE IS SW_l6XlSWITCH CARD?

The 16XI Switch Card ij located at cabinet 302 Al A5 A33.

Would you like to see a picture of its location? (Y or N)
USER: N

What is your question? (enter HELP for options) .
USER: WHAT IS ITS INPUT?

The IX16 Buffer Control Card is the input to 16X1 Switch Card.

What is your question? (enter HELP for options)
USER: WHAT IS ITS PURPOSE?

The PURPOSE of l6Xl Switch Card is to accept baseband input signal
from 1x16 buffer card and connect it to its baseband signal output.

Whet is your question? (enter HELP for options)
USER: WHY IS FAULTY OF PRIMARY_MULTICOUPLER CARD FALSE?

[LES can even answer questions about why something is not faulty]

The FAULTY of Primary Multicoupler Card is FALSE because
OUTPUT_SIGNALPRESENCE of Network Analyzer (channel A) is TRUE, and
PATHPOSITION of Network Analyzer (channel A) is greater than
PATH-POSITION of Primary Multicoupler Card.

USER: WHERE IS SW_-IX16_BUFFER CARD? 0

The 1x16 buffer card is located in cabinet 302 Al A5 A12.

Would you like to see a picture of its location? (Y or N)
USER: Y

At what level would you like it displayed?
(1) Cabinet level,
(2) Section level,
(3) Card level, or

440



(4) All of the above -
Enter your choice (1 to 4). 0
USER: 4

[LES now displays 3 figures for the user, which indicate 7

where in the BDS the 1x16 buffer card is located. Each
figure briihgS him in one level closer. For more details,
see Figures 2, 3, and 41

What is your question? (enter HELP for options)
USER: QUIT

We are now leaving INFO and returning to LES. Enter <CR> to help
you remember where you were in your session.
USER:

Is the signal detected by the spectrum analyzer: Distorted, Missing
completely, or Present and good (D, M, or P)?
USER: P

NOTE: Please disconnect the Spectrum Analyzer from the 16Xl Switch
Card at cabinet 302 Al A5 A33 and secure the old connection.

USE SPECTRUM ANALYZER

You now need to connect the spectrum analyzer to cable from Switch
Cabinet to Computer-Test Cabinet at cabinet 102 A3 J98 or cabinet
300 A3 J18 and compare the signal detected with that generated by
Frequency Synthesizer A at cabinet 300 A2 A6.

First, you must connect the spectrum analyzer to the input of the
cable from Switch Cabinet to Computer-Test Cabinet.

Does the Fignal detected by the spectrum analyzer agree with the
* generated signal? (Y or N)

USER: N

(LES suggests another input/output path to try)

We will need to use input line 4 and output line 47 for our next
test.

Enter "SS" <CR> at the BITE console to check if either of these •
lines are out of service.

Is line 47 in the OUTPUT or ADD-OUT list of the EQUIPMENT OUT OF
SERVICE table? (Y or N)
USER: N

Enter "CN4,47" <CR> at the BITE console to connect input 4 to output
47 in order to check out path with different 8xl Second-level Switch
Card but same Switch ALmplifier/Control Card.

441

L -_--



-p~- .S S

v S v vv vv H v

301 03 05 06 37 39 30 3HU2 3 34 U

t

Frn iwA

NOTE Th hihligtedcabnet arethoe aong he athdefned q iputlin

4 an outut lne 49 Ap

Figure so s ph sa laou of th caint S n th S
IU~ Si U M MUMN4S2



0

Blank Panel B---] Dlank Panel

Logic Card Cage Asserbl[ A2 Blank Panel

i6xG6 Second Level AsseNblg i A j 16x16 Second Level Assemble

iGxiC Second Level Assembl I A4 i6x6 Second Level Assenbl"

lGxtG Second Level Assembl 1 ~ A5 [I ] 161 Second Level Assemblq

8x1 Second Level Asseubl jj AG jj Oxi Second Level Asseublq -

Power Control Panel Assemblq [Q Blank Panel

Front View Rear View

Figure 3 shows how LES highlights the section of 
the switch

cabinet where the designated 1 X 16 buffer card 
is located

443

-- _



Front View

6
K

a

t
r

AtA2 A3A4 A5 A6A7 ABASAIOAll AS3A14AM AM6 A17

lig hffer Cards

Figure 4 shows how LES nighlights tne 1 X 16 buffer carde
which is designated ;ay the user

444



USE SPECTRUN ANALYZER

With the spectrum analyzer still connected to cable from Switch
Cabinet to Computer-Test Cabinet at cabinet 302 A3 398 or cabinet
300 A3 J18 compare the signal detected by the spectrum analyzer with
that generated by Frequency Synthesizer A at cabinet 300 Al A6. . .

Does the signal detected by the spectrum analyzer agree with the
generated signal? (Y or N)
USER: WIY

[Again, LES explains his reasoning]

We have established that:
(1) OUTPUT-SIGNALPPESECE of 16XI Switch Card is TRUE;
(2) INPUT_STGNAL_PRLSFNCZ of cable from Switch Cabinet to 0

Computer-Test Cabinet is FALSE;

If we can:
(1) show that OUTPUTSIGNAIlPRESENCE of path with different 8x1

Second-level Switch Card but same Switch Amplifier/Control Card is
TRUE;

or •
(2) show that FAULT_LIGHT_SETTING of 8Xl Second-level Switch Card

is ON;

Then it follows from Rule 35 that:
FAULTY of 8Xl Seconr-level Switch Card is TRUE.

USER: WHY
[Asking WVlY again causes LES to show the components it is presently

considering as possibly faulty]

If we can:

(1) show that FAULTY of 8X1 Second-level Switch Card is TRUE;
or

(2) show that FAULTY of Switch Amplifier/Control Card is TRUE;
or

(3) show that FAULTY of Switch 3xl Relay Card (test signal output
interface) is TRU(E;

or
(4) show that FAUITY of cable from Switch Cabinet to

Computer-Test Cabinet is TRUE;
then the goal will have been achieved.

USER: IN1FO

[Back into the database retrieval model

What is your question? (enter HELP for options)
USER: WHAT IS RULE 35?

445

SO



Rule 35

(1) Author: T. J. LAFFEY
(2) Date: JUNE 16, 1983

(3) Author's English: IF THE SIGNAL IS PRESENT AT THE OUTPUT OF
THE 16X S-ITCH CARD, AND TilE SIGNAL IS NOT PRESENT AT THE
CABLE FROM THE S' ITCH CADINET TO THE COMPUTER TEST CABINET,
AID THE SIGNAL IS PRESENT ON AN ADJACENT 8X1 SECOND-LEVEL
SWITCH CARD, TiL'. THE 8XI SECOND LEVEL SWRITCH CARD IS FAULTY.

(4) LES's Interpretation: If OUTPUT_SIGNALPRESENCE of 16XI Switch
Card is TRUE, and INPUTSIGNALPRESENCE of cable from Switch
Cabinet to Computer-Test Cabinet is FALSE, and OUTPUTSIGNAL_
PRESPNCE of path with different 8xl Second-level Switch Card
but same Switch Amplifier/Control Card is TRUE, then FAULTY S
of 8XI Second-level Switch Card is TRUE.

What is your question? (enter HELP for options)
USER: QUIT

We are now leaving INFO and returning to LES. Enter <CR> to help you .
remember where you were in your session.
USER:

Does the signal detected by the spectrum analyzer agree with the
generated signal? (Y or N)
USER: Y

[Finally, LES reaches a conclusion and informs the user) .
•******************* ***************************************,"-.

* * ,

• I have reached the conclusion that the 8X1 Second-level *
• Switch Card at cabinet 302 Al A6 A2 is faulty! *
• ,
* * * ************ ** ** ** * ** ********** ******* ** *** ********** *** 0

Enter command (HELP for options)
USER: WHY

[LES explains how he came up with his conclusion]

How did I come up with my conclusion(s)?

I said that because:
(1) OUTPUTSIGNAL-PRESENCE of 16X1 Switch Card is TRUE,

and
(2) INPUTSIGNALPRESLNCE of cable from Switch Cabinet to

Computer-Test Cabinet is FALSE,
and

(3) OUTPUTSIGNAL_PRESENCE of path with different 8xl Second-

446

. .. ... -, , .. .. .... . . i . ... m ... | nt . . ... . . . . . . . : . .. . . . ..



level Switch Card but same Switch Amplifier/Control Card is TRUE.

Enter command (HELP for options) S

USER: WHY

(Asking WHY again causes LES to explain how it concluded each of
the above 3 facts]

How did I come up with my conclusion(s)? 0

I said that because:
(1) OUTPUT_SIGNAL_P,ESENCE of 16X1 Switch Card is TRUE because

Spectrum Analyzer detected SIGNAL,
and

(2) INPUT.SIGNAL. PRESENCE of cable from Switch Cabinet to
Computer-Test Cabinet is FALSE because Spectrum Analyzer detected , S
NO SIGNAL,

and
(3) OUTPUT_SIGNALPRESENCE of path with different 8xl

Second-level Switch Card but same Switch Amplifier/Control Card is
TRUE because Spectrum Analyzer detected SIGNAL.
Enter com.nand (HELP for options) S

USER: WHY

How did I come up with my conclusion(s)?

I said that because:
(1) Spectrum Analyzer detected SIGNAL because the user told me,and .
(2) Spectrum Analyzer detected NO SIGNAL because the user told me,

and
(3) Spectrum Analyzer detected SIGNAL because the user told me.

Enter command (HELP for options)
USER: WHY

How did I come up with my conclusion(s)?

I have given you all the evidence I have.

Enter command (HELP for options)
USER: quit

Exiting program...

[LES giver farewell remarks]

447

..........t t - - -- ±. . . .



5.0 DISCUSSION

There is a urgent need for "user-friendly" computer systems to
help in maintenanice diagnosis of electronic equipment. As rioted
in a recent report 1I), there are many deficiencies in present BIT
and ATE. Unlike existing ATE, LES minimizes the nurber of tests
to find a faulty component. Furthermore, we have discovered
several advantages in using an expert system for these
applications. First, the existing general expert system program •
and database structure greatly reduced the time needed to create d
working system. Second, the system has user-friendly features
(such ac the ability to explain its reasoning, ability to answer
questions about its database, and only ask for tests as needed in
the diagnosis) because they are already built into the expert
system.

The accuracy and thoroughness of the computer BDS Diagnostic
System should become useful even to the expert. Graphical
displays, highlighting the corponent(s) he is currently working
on, have proven highly valuable. The system can tell the user the
exact location of faulty or questionable components and remind him
of unlikely components (such as cables) which have not been ruled
out by the analysis. As rules are added from experience, the S
system will become able to quickly recognize rare and unusual
problems.

For the BDS, encoding some general rules about connected
components was somewhat useful in reducing the total number of
rules. However, due to practical limitations (such as
inaccessibility of many components), the method (tricks) used by .
the expert were crucial. As LES is tested in the field, ve expect
more modifications and extensions will be needed.

This case-grammar representation and the attribute-database
representation give the system a uniform method for rcpresernting
the knowledge that is passed between nodules of the program.
During problem solving, the AND/OR tree goal structure makes it .. 9 .
easier for the program and the user to understand the state of the
program than a backtracking method in which unsuccessful and
completed branches are eliminated or never explicitly created.
The system can readily have many goals and subgoals in partially
completed states without difficulty. LES can build AND/OR trees
in a depth-first or breadth-first manner depending upon a flag
setting. Hoiever, in practice, we discovered that it worked best S
if the program tried to work in a depth-first manner but switched
temporarily to breadth-first whenever it reached a dead end.

From the dialogue, it is readily apparent that LES is often asking
the user to type in BITE commands and for their results. Most of
this user interaction could be eliminated if LES were connected
directly to BITE and could make its own tests. Future systems .
should be designed to combine the expert system and BITE.

448



The interaction between the troubleshooter and the expert system

also requires great attention. We are currently integrating voice 0
input/output capabilities into the system in order to allow the
troubleshooter the freedom from having to constantly return to the
console. Another important capability is to have the expert
system adapt to the skill of the user. Different dialogue should
be used between LES and an expert, than that between LES and a
novice. Much work remains to be done in this area.

REFERENCES

[I] AMt.ifji_¢J JpitgJJjCJ _ t [ anjeunIen A report
for the OSD/IDA R&M study, Anthony Coppola, Committee Chairman
(1983).

[21 W. J. Van Melle, 2_yat=em Aidg, in mnj~tx-ugting Egqt~a.tisn
Prra,.. UMI Research Press, Ann Arbor, MI (1981).

[3] E. H. Shortliffe, /nputj& dLd R Consultations.:
14=31L Elsevier, New York (1976).

14] W. A. Perkins, "Memory Model for a Robot," Stanford Artificial
Intelligence Laboratory Memo. AIM-225, STAN-CS-74-406 (1974).

15] M. Minsky, "A Framework for Representing Knowledge," in The
-D3y9cblojgy a- _tC~eupm Yi ion, Ed. by P. H. Winston, McGraw-Hill,
New York, pp. 211-277 (1975).

[6] J. S. Aikins, "Prototypes and Production Rules: An Approach
to Knowledge Representation for Hypothesis Formation," in

~cW P1 l. e a±i±JA X Di.ktim.Q .i 1lqint faal.exDce on
Artifislrdt Lczezg , Tokyo, Japan, pp. 1-3 (1979).

173 C. J. Fillmore, "The Case for Case," in Ulnivgrsi in
Lj Zj., sT&,,y± Ed. by Bach and Harms; Holt, Rinehart, and- .
Winston Inc., Chicago (1968).

[8] R. C. Schank and C. K. Riesbeck, Iflside Computer
. Lawrence Erlbaum Associated, New Jersey (1981).

[9] R. Davis, "Expert Systems: Where Are We? And Where Do We Go
From Here," in A. 1.vzJtnRe_ Vol. 3, No. 2, pp. 3-22 (1982). .

[10] N. J. Nilsson, rjPjIQS, Df Artif igii. Inte lsen r Tioga,
Palo Alto, CA (1980).

449

L0



ABOUT THE AUTHOR

Mr. Thomas 3. Laffey is a Senior Scientist at the Lockheed
Palo Alto Research Laboratory where he is engaged in the
development of the Lockheed Expert System (LES). The 0

LES is currently being applied to the area of equipment
diagnosis. Previously, he was employed at General Motors
Research Laboratories as a Programmer/Analyst. In 1982,
Mr. Laffey received an M.S. in computer science from
Virginia Polytechnic Institute where his thesis work was in
the area of computer vision and artificial intelligence.

450 7



THE APPLICATICN OF ARTIFICIAL INTELLIGENCE TO

A MAIN TENANCE AND DIPGNOSTIC INFORMATION SYSTEM 0

In David R. Antonelli

Boeing Aerospace Company

00

O ABSTRACT

Increasing problems in the complexity of military systems, fault diagnostics, 0

and maintenance training are affecting the readiness of the military services.

Expert Systems, a discipline of Artificial. Intelligence (AI), appears to offer

solutions to many of these problems. However, some problems do exist in

present Expert Systems. This paper addresses a different approach to the •

applications of Expert Systems to logistics in the development of a

Maintenance and Diagnostics Information System (MDIS). The MDIS is a

multi-domain knowledge acquisition system that supports integrated 0

diagnostics, maintenance, training, data collection and data analysis. Use of

systems like these provide eacn recruit with a computerized expert to aid in

the diagnosis and maintenance of system faults.

INTRODUCTION

This paper will discuss the application of Artificial Intelligence (AI) to a S

Maintenance Information System used in the area of logistics support. It

begins with a cursory look at the problems in military systems and

maintenance, and problems with present Al approaches. The logistics

requirements and the approach used in defining the criteria and design of the

Maintenance and Diagnostic Information System (MDIS) are also briefly

!40 _

. . .. . . . . . .~ ~~ m- - . . . . . . . . . . . . . . . .



discussed. The remainder of the paper addresses the MOIS, what it does and

how it works. In order to limit the length of this paper, items such as the 0

Inference Engine and the domain details are not discussed.

PROBLEMS

Military Systems and Equipment

The complexity of current and near term military systems is increasing as

system design takes advantage of new technology, and multi-mission concepts

drive increasing capability requirements into the systems. This complexity

puts increasing demands on the already burdened logistics resources necessary

to maintain system readiness. Current maintenance aids to support diagnostics

and troubleshooting, training and technical publications currently in use fall

short in meeting the necessary logistics and readiness requirements.

Consider the problems encountered in diagnosing avionic systems faults. Much --

of the automatic testing methods in use today such as Built-In Test (BIT) and

Built-In-Test-Equipment (BITE), isolate system faults to three or less cards.

In some cases, this is acceptable. But, when none of the three cards called

out by the automatic test are the cause of the problem, the technician is left

to his own devices. If the technician is inexperienced or does not have a

high degree of expertise on the equipment, the probable approach is a hit or S
miss removal and replacement of replaceable units. In other areas removed

parts are sent to the depot and returned Retest OK (RTOK). RTOK rates on

avionics LRUs average about 30%. (Allen E. Herner, T. M. Miller, Russell M.

Genet) Keeping track of these particular RTOK units and obtaining data as to 1

accumulated problems and reasons for removal is all but impossible. Along the

same line transient and intermittent faults are as elusive as ever.

452



Now let's take a different view; the equipment itself. The complexity of both

current and near term military systems is increasing as system designers take

advantage of new technology. As a result of this increasing complexity,

problems are more difficult to diagnose and maintenance time is increasing.

In addition the number of technical publication pages required to operate and

maintain these systems has dramatically increased. At the same time, the

reading and skill level of military recruits is not increasing at the same

rate and is putting increasing pressure on both technical publications and

training requirements. The requirements for the basic recruit to maintain

complex military systems through the use of multi-volume technical

publications, often encompassing thousands of pages is directly affecting

system readiness and increasing the cost to maintain the current systems. The

problems of diagnostics, maintenance and training personnel in these areas are

growing at a fast pace. -

Artificial Intelligence (Al) as a Possible Solution to the Problem

As recent as a few years ago the military began to look at Al as a possible

solution to some of the above problems. One of the Al disciplines tha) is "

currently being evaluated is the Rule Based Expert Consulting System, whereby

the knowledge of a human expert in a given qomain is entered into a computer.

This knowledge is used to guide the less experienced user through a specific

process. Many of these systems have been used with a high degree of success.

A number of people Involved with diagnosing problems on physical devices such

as electronic and mechanical equipment, looked toward those expert systems

developed in support of the medical field as possible applications to physical

devices. MYCIN, for example, is an expert system developed to aid medical

diagnosis. (W. Van Melle, A. C. Scott, J. S. Bennett, N. Peatrs) However,

453

Al__



because of the obvious differences between a human being and a physical piece

of equipment, medical expert systems didn't quite fill the bill for the 0

diagnostic problems. But even when expert systems were designed and built to

diagnose physical systems, many lacked the ability to do a complete job.

A number of problems exist in this area. One of the problems is in extracting 0

knowledge from human experts. In a number of cases, researchers and knowledge

engineers have reported bottlenecks in getting the expert's knowledge. The

expert starts out with a small knowledge base and builds on that. A system --

starts out with a few (seventy-five or one hundred) rules, and builds up to a

thousand or more rules. In some cases the rule base is never considered

complete. Figure 1 illustrates the acquisition of rules in a given system

over a period of time. The time required to build present expert systems is 0

from three to five years.

Another problem found in using expert systems is the lack of continuity in the

expert's knowledge. Often, in the initial (and sometimes advanced) stages of 0

developing a rule based system, gaps appear in the logic trail. This requires

a great deal of rethinking and possibly restructure of the knowledge base.

This may account for the large amount of time needed to build an expert -

system. In addition, in the field of diagnostics and maintenance, the experts

knowledge may consist of only those events that occur regularly and in large

numbers. Many of the lesser known occurrences go undocumented. A person

becomes an expert by working in the field for an extended period of time and -. 0

through experience accumulates knowledge and a "gut feel" for specific

problems. This empirical type knowledge is entered into the rule base. What

may not end up in the expert system is the logic and elimination process that

a good technician (expert or otherwise) uses when the very uncommon yet very

critical problem occurs. Knowledge in the form of production rules is not

454



NO.-
RULES

TIME

Figure 1. Rules sn the Knowledge Base Over Time

enough. In addition to the possible lack of continuity and knowledge gaps,

they do not represent the true nature or picture of the equipment being

addressed by the expert system.

The single domain approach is another limiting factor in the use of expert

systems in today's complex physical systems. It is not only the limited range

of knowledge that decreases the effectiveness of expert systems, but the fact

that the solution to these problems requires the use of a number of different

disciplines. Some of the disciplines are closely related, others seem totally

unrelated until they are used in the total solution. This area is discussed

later in this paper.

The problems of extracting knowledge from the expert, logic bottlenecks and

gaps in the rule base, the extensive time to build an expert system, the need

455

S



_ o-- -o

for a single expert and single domain system constraints are the focus of our

research in the application of Al disciplines to logistics problems. Some of

the above problems with expert systems and others are addressed by William B. 0

Gevarter in the August 1983 issue of IEEE Spectrum; Expert Systems: limited

but powerful, pg. 39.

REQUIREMENTS OF A LOGISTICS SUPPORT SYSTEM

In the logistics arena of product support, the requirements for a system

encompass a number of disciplines. In terms of fielded systems and equipment,

the disciplines of diagnostics, maintenance, training, data collection and

data analysis are considered to be of critical importance.

All of these disciplines must be considered if the equipment is to be

maintained in a state of readiness. A system addressing these multiple

disciplines would offer an effective solution to the problems outlined above.

However, if such a system were built to maintain a single item of equipment,

the development costs would be prohibitive. Therefore, the ideal system must

be a knowledge acquisition system that is essentially generic in nature

whereby the user builds many specialized systems from one generic system.

In addition to logistics requirements, two other requirements that directly

affect logistics support need to be addressed. Any proposed system that deals

with equipment should incorporate integrated diagnostics and be user friendly.

The integrated diagnostic concept is supported by the military. Basically

it's defined as the most efficient and cost effective mix of failure

detection/isolation methods and equipment. Used correctly, this approach .

coupled with causal reasoning (R. Davis) should go a long way in eliminating

the problem of leaving the inexperienced (and sometimes experienced)

technician with no resolution when the system in use fault isolates to three

cards (devices) and none of them is faulty.

456



The requirement that a system be user friendly is not only good sense but in a

way mandatory. A system is useless unless someone can and wants to use it.

Both the system designer and expert can aid in this area. The system must be

designed to enable the expert to enter additional "help" where and when it is .

needed. However, user friendly lies mostly in the hands of the person S

entering data into the system. It is the expert's responsibility to make sure

"help" is in the system. Of all of the concepts and requirements listed

above, user friendly is not only the most important, but also the hardest to

define. Even though it may be hard to define, some attributes of a user

friendly system can be listed. Of course natural language is important, but

it is far frcx enough. The system must be rich in "help"; that is, it must

contain additional information and approaches that the expert feels may be ..

needed to supplement a statement or a particularly complex situation.

Carrying the concept further, the system could even have the capability of

receiving user input describing problems the user is experiencing when using -

the system. Finally, the system must be built for the intended user. Care ...

must be taken that both the system designer and the domain expert know the

*" capabilities and liabilities of the intended user. Most important in this .

background is the formal education, skill level, IQ and aptitude for the

intended job. Studying the user's needs and the job that the user has to do -

goes a long way in making the system user friendly and user acceptable.

Probably the most useful attribute that makes a system both user friendly and

user acceptable is graphics. Used in conjunction with text it aids in getting

the point across and, in most cases, allows for fewer instructions in any

given situation. Present state-of-the-art enables animated graphics. If a

picture is worth a thousand words, then an animated picture is worth tan

thousand words, especially when trying to -explain dynamic concepts from the

operation of an engine to the Brownian Movement in physics. 0

457



The requirement therefore, for a logistics support type of expert system, is a 0

system that covers a number of disciplines. At the same time, it must be able

to accommodate many different types of equipment. It must also include in its

design the ablity to support integrated diagnostics. But most important, it

must be designed and built for the intended user.

APPROACH

Based on a study of a number of expert systems, their functions and domains,

and our own expert system, HPI, the following approach to designing and

building an expert system was arrived at.

The system designer must consider:

The nature of the problem

The physical composition of the source of the problem .

The specific requirements of the Solution

The Expert's ability and skill level

The intended user's abilities and liabilities, and job requirement.

The nature of the problem was stated above and includes the problems of the

military (both personnel and equipment), the inherent problems in present

expert systems and logistics support problems.

The physical composition of the source of the problem in this case is simply

looking at the piece of equipment in terms'of its parts and functions. (R.

Davis 83a) To stress the point here, let's compare two existing expert

systems, MYCIN and DART. (M. R. Genesereth) The physical composition of the

458 _

S



source of the problem for MYCIN is a human body, for DART it is a computer.

Given the two, the potential for a graphic (tree structure) description,

different methods of testing, defining expected output given a specific input,

and just general all around probing and removal and substitution of suspected

parts is much greater in the computer (DART) than in the human body 
(MYCIN). 0

Because of this, in the area of research, there is more flexibility in trying

out new concepts in diagnostics, freedom to try new testing methods and the

effects of failure are less drastic. In addition, physical objects such as

computers, engines and the like lend themselves to the application of causal

knowledge. (Davis) Causal knowledge can be used to a number of advantages

as will be demonstrated later in this paper. It is enough to say that the

composition of each source will have its own attributes to aid (or hamper) in

building the expert system.

Specific requirements of the solution are shown in the logistics support ....

requirements. Logistics support involves a number of disciplines. Many of

these disciplines are synonomous with the possible domains of an expert

system. Therefore, the optimum approach to meeting the various logistics

needs is the development of a multi-domain expert system. In addition, since

the military has many different types of systems and equipment, any proposed

expert system must be generic, enabling the experts to build a separate expert

system for each different piece of equipment.

In considering the expert, the system must aid the expert in inputing the data

in such a way that the bottlenecks and gaps in the logic train are for the

greater part eliminated. If this occurs it should speed up the process of

building the expert system. In addition, the system must be designed to

accept and use causal knowledge.

The intended user's requirements to complete the job include the fact that the

user is a maintenance technician who at best will have graduated from high

459

-9



school, be of average intelligence, and have a mechanical aptitude. In the 0

case of equipment the user will need all the help available in diagnosing and

maintaining equipment. He will need such information as what parts and part

numbers are needed plus what tools are needed to do the job. This must be

supported by step-by-step instructions along with graphics. The system must

enable the technician with an average skill level to function at a high

performance level.

THE MAINTENANCE AND DIAGNOSTICS INFORMATION SYSTEM (MDIS) S

The approach to addressing the previously listed problems is the development

of a Maintenance and Ofagnostfc information System (MDIS). The MDIS is

essentially a multi-domain knowledge acquisition system. Al concepts and

disciplines are used only where practical and appicable. At this time the

mIIS encompasses six domains: diagnostics, maintenance, maintenance training,

data collection, data analysis and graphics. Maintenance is divided into

repair maintenance and preventative maintenance.

The multi-domain concept presents a number of problems. First, a multi-domain

system infers that there will be a number of different experts in different

domains entering data into the expert system. This could mean an expert for

each domain, although in our case it did not. Another problem is that

different experts have different ideas on what constitutes relevant

information regarding their specific domain. At first this may not seem much ...

of a problem, but as the system grows, relationships between domains tend to

get weaker, especially with a different expert for each domain. Without

proper control a multi-domain system could result in a hodge-podge of

disjointed bits of information.

In building a system such as this it is important that there be continuity

within each domain and a relationship between domains. In order to ensure

460



this, there must be some built-in method of controlling the input by the

experts in the various domains. The method used must not only have the

physical and functional knowledge of the piece of equipment the expert is

talking about, but also knowledge of what previous and related domain data has 0

been input by the various experts during the building of the system. In order

to accomplish this, two separate MDIS modules will handle the control,

continuity and domain relationship problems. These are the System Description

Module and the Builder's Guide.

System Description Module

The System Description Module is used to describe a piece of equipment or a

device to the MDIS. Any piece of equipment or device consists of one or more

parts. Each part performs a specific function. The sun of the parts are

connected or related in such a manner that their combined functions are J.

performed simultaneously and/or in a predetermined and related sequence of

events. This total joining of parts and related functions results in a single

unit (piece of equipment or device) whose objective is to perform one or more

functions. It can also be said that given the specific occurrence of 
specific

input(s) to a given part, its function will produ:e the occurrence of a

specific output called the expected cutput.

The System Description Module enables a person to describe both the physical .
(parts) and functional organization (R. Davis 1983b) of the piece of equipment

that is to be addressed by the MDIS. The piece of equipment is described in a

tree type structure starting with the general form at the top level and _6

progressing to the more detail form as lower levels are described. Each

physical part of the equipment and its function must be included. The level

of detail in the description is left up to the person describing the

461

Q0



°

equipment. This will of course be governed by the user's needs and the level

of domain detail that is desired. Figure 2 illustrates the layout of a system

by description levels.

LEVEL 0

0

..

2 ~

E5 E 3

Figure?2. System Description by Level

Care must be taken in describing the equipment. The key is continuity. The

System Description Module contains the basic facts that will aid in guiding
and controlling the building of the rest of the MDIS. (These facts will also
be usd in many of the MDIS domains.) This includes both rule type data and 0
causal knowledge to be entered into the various domains. It is not important
that the lowest level of description be reached right away, for lower levels

can be added as needed. (In fact levels can be inserted as needed anywhere in
the description.) The important thing is completeness of the description 0
during the decomposition (N. Nilsson) from the top level to the lowest level.
Figure 3 provides an example of a tree structured physical content for an

engine.

462

-AMA" --



LEVEL

0 0i' I ~ENGINE 0'

DIST. I A I 2

BODY SHF OO O~S CN.3

Figure 3. Physical Content of an Engine

Obtaining and entering the physical data is not difficult. A schematic and

parts list of the equipment in question will provide the majority of the data

that is needed. Of course, the person entering the data must have. the ability .

to enter the data in a complete and logical fashion. The method of entering

the data (depth-first or breadth-first) is optional.

Entering the functional data is accomplished in the same manner as entering -

physical date. For each piece of physical data there must be an accompanying

piece of functional data. Functional data can be obtained from the technical

description document or one's own knowledge of the piece of equipment. Both

physical and functional data are important. They will be used to aid the

expert in building the domains of the MOIS and will also be available to the

domain expert on diagnostics for use in the diagnostic domain.

463

0



0

The key factors of the System Description are:

1. Any piece of equipment, device or system can be described down to the

desired level.

2. The system description must include the physical description and

functional operation to the detail required by the domains.

3. Having a complete description will assure continuity. This continuity -
0

will aid in solving the problem of logic bottlenecks and gaps when

domain experts are entering data into the RDIS. It will also assure

the availability of causal knowledge.

Figure 4 provides an example functional description.

LEVEL

FUNCTIONAL , . --
INPUT EN I E OUTPUT 0 . .

!S

DI CIL,
|2

Figure 4. Functional Operation at Each Level

464

-



The Builder's Guide

The Builder's Guide uses the system description information to guide the

various experts in entering data regarding their domain. It is important to

remember that its ability to guide the domain expert is heavily dependent upon

the system description. While the system description module aids in

continuity within each domain, the Builder's Guide aids in the relationship

between domains. (See Figure 5.) It takes all of the description information

(both physical and functional) and uses it in aiding in the development of the

rest of the MDIS. At this time the domains of the MDIS are diagnostics,

repair maintenance, preventative maintenance, maintenance training, data

collection, data analysis and graphics. Other domains may be added as our

research progresses. •

SYSTEM SLOWS DIAG. MAINT. TRNG. o.c. Do. GRAPHICSDESCRIPTION LEVEL GUIDE REP. PM

-b - 0- ~ - -----4

Figure 5. Maintaining Relationships Between Domains

The Guide knows these domains exist and requires that domains be entered in a

specific order. The MDIS is somewhat progressive, information in certain

domains is used as a guide in building other domains. The order of domain

construction is as follows:

465



1. Diagnostics or Preventative Maintenance must be entered first.

Diagnostics must be entered before Repair Maintenance because the 0

Builder's Guide will request a repair procedure for every fault

isolation result. It uses the information from both the system

description module and the diagnostic domain in aiding to build the .

repair maintenance domain.

2. Repair Maintenance can be entered only after Diagnostics have been

entered. (The diagnostic tells what is wrong; maintenance repair tells -

how to fix it.)

3. Diagnostics and Preventative Maintenance must also be entered before

Maintenance Training. -

4. Maintenance Training will be entered only after Diagnostics, Repair

Maintenance and Preventative Maintenance have been entered. The training

expert will use much of the text and techniques in the previous domains

in building the training domain. The training domain will also contain

theory. Training information will be requested for every module at each

level. The depth and completeness of this domain is left to the expert.

5. Data Collection techniques will have two modes:

Manual - For both manual and automatic (BIT/BITE) systems. Specific

data will be requested from the user but will be entered .

manually.

Automatic - For automatic and semi-automatic systems (Integrated

Diagnostics). Specific data will be entered automatically .•-

Data Collection techniques and specific data needed will be entered after

diagnostics, maintenance and training.

466



6. Data Analysis will incorporate mostly standard statistical techniques and

will be entered after data collection. l

7. Graphics can be entered on an ongoing basis as each domain is entered, or

after the system is complete.

The Builder's Guide performs a number of housekeeping functions before aiding

the domain expert in entering data.

First it determines that the system description has been entered and no ' -

changes have been made to it. It then gives the domain expert the name of the

system or equipment that has been described and shows a breakdown of parts and

functions that make up the total system or equipment. Finally it advises the

domain expert of what domains are already in the system and what domain or

choice of domains it expects next. The Guide uses the graphics capability in

describing the above and giving aid to the domain expert.

It starts with the top (level 0) module in the system description and asks the - -

expert for data regarding that module. If this is the first domain being

entered (diagnostics or preventative maintenance), then the guide uses only

the information in the system description to aid the expert in entering data.

The guide will keep a list of those modules in the system description that

were not addressed or bypassed by request of the expert. If other domains

have previously been entered (diagnostics) and the domain being entered

depends on that information (repair maintenance), the guide will use both the

system description data and the domain data at that level in aiding the dorain

expert. An example of this would be if the diagnostic domain were previously

entered and the repair maintenance domain was being entered, then both the

system description data and diagnostic data at each level would be used in

aiding the repair maintenance expert in entering data. The builder continues

467

• 10



this in a top down fashion in such a way that specific functions in a piece of

equipment are handled individually. When the last module in the piece of

equipment is completed, the Guide informs the expert as to which modules were

bypassed in the system description and asks the expert to review the logic

(continuity) and relationships to other domains, if they are present. An •

example of verifying the relationships between domains and logic continuity is

as follows. The diagnostic domain must be entered before the Repair

Maintenance domain. When the repair domain is entered, the guide checks the - -

top system description module and also the diagnostic for that module. A

repair procedure must be entered for each description module/diagnostic pair

that the Guide shows. If no repair procedure is available, the statement *NO

REPAIR PROCEDURE FOR <,odule><diagnostics> ARE AVAILABLE" is displayed. The •

Guide checks for other relationships such as the relationship between

diagnostics, repair, data collection and data analysis in the same manner.

The lDIS Domains -

At this time the MOIS incorporates six domains. Specifications on the

contents of each domain and domain relationships have been written. The

ability of the Builder's Guide to aid an expert in entering data into the AR

diagnostic domain has been accomplished at a primitive level.

INTEGRATED DIAGNOSTICS

At this point it is important to address diagnostics. Since the MDIS is a

piece of software, it can be used in a fully automatic, semi-automatic or

completely manual testing mode or any combination of the above.

When used as a part of (or Incorporating) integrated diagnostics, parts of the

MDIS diagnostic routine would be incorporated in the automatic testing

468

i&.



software (in keeping with the integrated diagnostic concept). It will monitor
0

the equipment through the regular BITE and receive input regarding equipment

problems from both BITE and BIT. Automatic diagnostics would be supplemented

by causal knowledge and manual diagnostics depending on the testability of the

given equipment. The data collection domain would also be included in this 0

concept, some data would be automatically input to the data collection module

while other data would be manually input. Finally, certain graphics would be

portrayed depending on input to the graphics module by the automatic test .
0

program. Figure 6 shows the incorporation of integrated diagnostics and MOIS.

AUTOMATIC EUPET-
|MONITORING AND SITE EQIPEN
TES S8rARE IT

MDIS 6. ..anit"teDgotc

- TRNG.

0

DATA """
COLLECTIONS ," .

DATA . .
ANALYSIS -

GRAPHICS ;,

Figure&6 MDI$ and Integrated Diagnostics_ .l

469



°- .---.II-.

Mlitary and Al Problems Solved by MDIS

At this stage of the research, it is impossible to state what military or Al

problems an HDIS will solve (or create). However, we can state the problems,

what solutions an MIS may offer, and offer remarks as to why a solution might

be reached. The anticipated problem solutions are listed on Figure 7.

Projected Use of MOIS

The present use of the MOIS will be in the field only. The data collected by

the Data Collection Module and the Data Analysis Module will be dumped and

analyzed at a higher level (depot). The information produced from the data

can be used in future design, personnel analysts, inventory control and . S

reliability.

In the future we hope to add a learning capability to MDIS. Data from various

areas of operation would be analyzed and the results fed back to the MOIS in _

the field. This would have two advantages. One is that each MDIS could

update its knowledge of how it works in its own environment. The other, and

even more important, is that each MDIS would know what to expect in different

environments. This will make them highly portable and enable them to advise

their users of what to expect when a change in environment occurred. This is

shown in Figure 8.

Technical Problems

At this stage of the project there are two areas of concern. The magnitude of

these concerns won't be known until more information is available. -

First there is the natural language interface between the expert and the

Builder's Guide and the interface between the user and the MDIS. The

expert-builder's guide problem lies only in the input to the Builder's Guide. 0

470

__e_ 0



IL0

a V C

U L .2 s -

cr 0 0

0~ '0
a U

0 a

ce~ 0 EU W
C6 E

U w, LS (3 a

z C

0 . -v -
cc w 0

o~ ~ u~471



CC
u

75

C. .

< .2.2
.i *

CA0 fJj I 03

o ~ v cc4 ~~

cc E

-6 m
C4- s C4) 6 * ., L 0- E

E E0- z @E 0

0l M0 o,0C
w r4 U

rn ucl @ @ 0..

CL

x' LiJ

0 I-0

96 3 CZ

472



0 Ca

go.~a 0. c
C*O I cn'* I ~ 2~

u 04 tr r 03

C9

C .0 b. 0

w CA CL .c. CLI .

'm 0 .. I I
IA = D 0 R

0.

cc .ca

uID

mu O~473



*-A 0 0 boo

0. -0eq~. u
C: Al

0.
vJ-* -3

0~ E

00

E~~

CL 3 0. 5

00
10 0 E4

T 4) 0

~ 0 l 0.4

73 M

6) 6

474



cS

2%S

4,r

ct W5 -

*- 4.) >
U20 MJ N*- ~ ±~ t~>

cc . .

16 - A-

.1 12 --

GO E :64

U 'A

C . ~ 0 L4 ' 11

Gi T

000
C6 - C

4.)

0 ~ .475



Lu

LLI 0

000

Pz z

U2 0 0

0 --

A.e

U Z
A LU

LLU

0'

LLI

LU LiS



We do not feel that the expert will have a problem understanding the output

from the guide because, as the designers, we can control the output with a 0

limited vocabulary. In the case of the user - MDIS, the problem lies both in

the input and output. Only the expert building the domains can control those,

and as the designers of MDIS we have little control over this.

Another problem may be the management of building the system by the customer.

An empty MDIS will have the capability to describe a piece of equipment or

system and after it is described, aid domain experts in updating data. To

what depth this will be taken, who will make the decision and who inputs the

data has not been addressed yet.

Conclusion

The System Description Module was built that described both the physical and

functional operations of a four cycle, internally reciprocating engine. Only

the ignition system was described to the lowest level of detail. The ignition

system was chosen because it encompasses both mechanical and electrical parts

and functions. At this time this module is used only to aid the domain

experts in building their domains. The system description module is

programmed in Franz Flavors (Wood 82) and runs under UMLISP (Allen 82).

The Builder's Guide was built and programmed in OPS5. At this time it is able

to use the data from the System Description Module (level one only) to guide

an expert in building the diagnostic domain. Both modules operate, but only - - .

at a primitive level. No attempt was made at building other domains such as

repair maintenance or preventative maintenance. At this time the MDIS is not

considered operational. But even at this early stage of this phase of the -i

research, some conclusions can be drawn.

First, when designing the system the total concept should be looked at and

documented before starting. What domains are to be Included, the objective of

477



each domain, what activities must occur to reach the objectives and the

relationship between domains is important. This information will govern the

design and detail of both the System Description Module and the Builder's

Guide. Without this knowledge of what has to be done within the domains of

the MDIS, the system will be limited to only the information that the System 0

Description Module can produce and the ability of the Builder's Guide to

access and use that information in guiding the domain experts

Another conclusion was drawn about the System Description Module itself. If .

one physical operation, that is one part, is left out, then its function will

probably be left out. However, continuity can be achieved anyway, but this is

false continuity, and will result in problems in building the domains. An

example of this is the engine that was used in the System Description Module.

The condenser was left out of the system description, therefore its function

was left out. The Builder's Guide did not know a condernser and its function

was missing and proceeded to aid the diagnostic domain expert based on what it 0

knew. Because of the flexibility of Flavors, the physical and functional data

on the condenser could easily be added to the system description. The

Builder's Guide detected this and advised that an update to the System

Description Module was made and that the diagnostic domain should be updated.

----

478

|A IN A - _- -



S

REFERENCES

1. Allen E. Herner, T. M. Miller, Russell M. Genet: "Diagnostic Errors and

Human Factors in Built-In Test (BIT), Air Force Human Resources

Laboratory (LRLA), April, 1981.

2. W. Van Melle, A. C. Scott, J. S. Bennett, M. Peairs: "The Emycin

Manual," Stanford University, October 1981.

3. R. Davis: "Expert Systems: Where Are We? And Where Do We Go From Here,"

The Al Magazine, Vol. 3, No. 2, Spring 1982, pp. 3-22.

4. M..Genesereth: "Diagnosis Using Hierarchical Design Models," S

Proceedings of the National Conference on Artificial Intelligence,

August 1982, pp. 278-283.

S. R. Davis: "Diagnosis Via Causal Reasoning: Paths of Interaction and the 0

Locality Principle," Proceedings of the National Conference on

Artificial Intelligence, August 1983, pp. 88-94,

6. N. Nelsson: "Principles of Artificial Intelligence," Tioga Press, 1980. -•

4 9

-S



AD-R145 349 RRTIFICIAIL INTELLIGENCE IN MAINTENANCE: PROCEEDINGS OF 6/6
THE JOINT SERVICES.. (U) DENVER RESEARCH INST CO JUN 84
RFHRL-TR-84-25 F336i5-82-C-81

UNCLSSIFIED F/G 6/4 NL

lomhEmhEEEEEmhI

Lm flllllllfhhf



1111 1.0.5
32

1.25 1 &.2

MICROCOPY RESOLUTION TEST CHART
NATIONAL. BUREAU OF STANDARDS-1963-A

wa



0

ABOUT THE AUTHOR

Mr. David R. Antonelli is currently conducting full-time
research on the application of Al to diagnostics at the
Boeing Aerospace Company. He has also served as an
Instructor of diagnostic software and hardware used in the
electronics of the E3A Sentry Program. In earlier
associations, he has completed studies on the use of failure
rate data for predicting reliability of newly designed
aircraft components. Mr. Antonelli received his B.S.
degree in statistics and industrial management from New
York University in 1962. •

480

m. _ AL_



Co .

INTELLIGENT INFORMATION RETRIEVAL FROM

O ON-LINE TECHNICAL DOCUMENTATION

*a. Arthur F. Griffin
Support Systems

Hughes Aircraft Company
Long Beach, CA 90810

ABSTRACT

Computerized maintenance manuals contained in massive, on-line
text and graphics data bases require an intelligent facility for
information retrieval. An unsophisticated user must be able to
easily find specific facts, procedures, etc. without having to
specify precisely the information he seeks. Hughes is develop-
ing an intelligent retrieval approach based on semantic network
knowledge representation. Because conventional serial computers
are too slow for large semantic networks, we have designed and
prototyped special purpose, parallel processing hardware called
Associative Loop Memory (ALOOP). ALOOP also dynamically organizes
a knowledge base in a manner that imitates human memory.

Introduction

The growing complexity of defense systems coupled with the
decreasing skill levels of military maintenance personnel have
greatly complicated technical doc,.mentation for training and on-
the-Job use. To address this problem# the armed services have
produced fully proceduralized, step-by-step documents such as
the Army's Skill Performance Aids (SPA). However, this approach
increased the volume of required data by three to five times,
as compared to conventional manuals, thus creating problems with
document size and cross-referencing.

In 1978 Hughes began investigating computer techniques to reduce
SPA data handling problems. We are currently developing an
Integrated on-line document authoring and presentation system,
sponsored in part by the Army and the Navy. Figure 1 character-
izes our system.

Paralleling these contracts, Hughes has an IR&D program to
examine longer range technical information problems. We focused
our 1982 and 1983 efforts on indexing and cross-referencing;
I.e., given a voluminous set of computerized technical manuals,
how does a user find a particular piece of information?
Conventional information retrieval techniques were found wanting
[SIGIR, 83J, so we started exploring an Artificial Intelligence
(Al) approach.

481



C...

A UT HO0R IN G TERMINAL _•

TERMINAL C.ccn
WORD MACHINE READABLE

PROCESSING TEXT AND GRAPHICS
TERMINAL JDATA BASE

S PAPE R

DOCUMENT
SCANNER

Figure 1. Full Text, On-Line Data Bases.

In 1982 we began developing a knowledge base structure called
Associative Loop Memory (ALOOP). ALOOP lets a user search for
information he cannot specify precisely. This search is done
through an associative semantic network of key words. These
key words and the relationships between them are extracted from
o-dinary, human readable text.

ALOOP is implemented for real time use in a parallel processing
architecture ideally suited for Very Large Scale Integrated
(VLSI) circuits. We have demonstrated the feasibility of this
memory concept with a hardware prototype and a software emulator,
both currently operational in our laboratory.

Defining the Information Retrieval Problem

From the beginning of this project, we were aware that the
current state of the art in Al presented serious size and speed 0
limitations for practical applications requiring large knowledge
bases. However, we believed that these limitations could be
overcome in the near future by making some judicious tradeoffs
between automated AI functions and functions that human users
do well with seemingly little effort. Extending this line of
thought to information retrieval, we assumed that although the
user may not know exactly what he was looking for, he would
recognize it when he saw it. If the user performs this
recognition function, then the job of the automated system is
to provide an intelligently guided browsing facility. To begin,
the system must rapidly guide the user through a large collection
of on-line documents to sections that are likely to be relevant.

Ci~)

,JS



p.

The system also has to present those sections in a way that
allows the user to judge relevance quickly. If the retrieved
sections are not relevant, then the system must suggest alternate
search paths. Further, the system is required to dynamically
organize its knowledge in response to user queries so that it
can react more intelligently to similar queries in the future.
Finally, the system must minimize the bottleneck of knowledge
acquisition that characterizes many current AI systems; i.e., the
system has to extract index words and relationships from the text
data base automatically to avoid the costly, laborious task of
human intellectual indexing.

Semantic Network Approach to Text Browsing

Our approach to intelligently guided browsing is based on seman-
tic networks, a form of knowledge representation found in many AI
systems. Semantic network representation was originally proposed
as a model of human memory by M. R. Quillian in the late 19601s.
Quillian asserted that human memory behaves as though concepts
were stored as complex networks of semantic associations. Recall
is accomplished by traversing the network's associative links
[Ratcliff, 81; Brackman, 79].

We use a semantic network memory model to index and search a
text data base. The following figure exemplifies a network that
links together key words extracted from the text of a maintenance
manual. This segment of network was retrieved in response to the
quory "torque meter" identified by "**" in the figure. The other
links in this example are text page numbers on wH)ch two words
co-occur in close proximity, indicating words that are likely to
be semantically related. Network links can also indicate infer-
ential relationships; e.g., part-of, instance of, and type-of.
Further, links can be used to attach procedural information such
as IF-THEN rules popular in expert systems.

The network can be thought of as a key word road map through

the data base. The user can quickly traverse the network in
any direction to browse the text. If the user reaches the edge
of the network, he can grow additional nodes and links in any
S di recti on.

Semantic networks interest us for two purposes: (1) representing
knowledge in computer memory and (2) displaying knowledge
graphically to a user. We are struck by the power of semantic
network diagrams to present complex associations and inter-
relationships in a way that is easy to understand. We see the
potential of interactive network displays as a simpler alterna-
tive, or adjunct, to natural language interfaces for both input
and output.

483

0



- *: - U V - .-

7S

EXAMPLE FROM ALOOP
EXPERIMENT SEPT 1983.
TEXT DATA BASE WAS
A U.S. ARMY MAINTENANCE
MANUAL. 59 POWER

NECESSARY 61
71 ECTION

STOPS 64 CONTROL
4 27

MANUAL 42 PUSH-BUTTON
MTER

COARSE T3 ORQUEq::::2: OPERATION

EXALUEFOM LOP0

APPLI ED-' VLE INDICATION

ATTRIBUTES

59TEXT PAGE

COARSE ~ ~ ~ ~ "UE QUERYRU .- OEATO-

Figure 2. Associative Network Display as a Text Data Base Index.

ALOOP Parallel Processing Hardware

Semantic networks must be very large to index multidocument
text data bases. The problem is that conventional serial corn-
puters cannot move through these networks fast enough. W. Daniel
Hillis has done some impressive work at MIT on non-conventional
computer architectures for AI applications. He points out that
today's AI programs running on serial computers manipulate a few
hundred facts and make decisions in minutes that would take only
seconds for a human. For many real world AI applications, we
will need to scale up the knowledge data base to a few million
facts, and decisions would take years using serial computers to
manipulate a data base of this size [Hillis# 81).

To cope with this speed problem, we are implementing the ALOOP
concept as special purpose, parallel processing hardware. _ 5
Segments of a semantic network are stored in a large number of
independent circular queues or memory loops, shown as circles
in Figure 3. All memory loops are searched simultaneously in
parallel, rather than serially searching through the semantic
network. In searching each loop, matched pieces of the network
are passed up to successively higher levels in the hierarchy of - .

loops. When matched pieces of the network move up, they displace

484



nonmatched pieces that move down. Figure 3 shows this exchange
as compare/transfer (C/T) boxes. Network pieces from different
loops are combined as they move up and ultimately reach the top
level loop. The contents of the top loop are displayed to the
user as the key word roadmapt mentioned earlier.

INPUT/OUTPUT (USER QUERY/RETRIEVAL) 0

TOP LEVEL MEMORY LOOP

COMPARE/TRANSFER
OPERATION .. '

IMPORTANT DATA / CTCT CT

UNIMPORTANT
DATA

CTCT C/T C/T C/T CIT CIT C/T

Figure 3. Associative Loop Memory (ALOOP) Architecture.

Dynamic Memory Organization

In addition to having speed, ALOOP dynamically organizes its - 0
knowledge base in a manner that imitates human memory. Roger
Shank's cognitive modeling research at Yale suggests that human
memory dynamically organizes itself so that people are auto-
matically reminded of the appropriate knowledge from past
episodes as required to process current experiential inputs
[Shank, 82). This kind of dynamic organization occurs in ALOOP
due to three cummulative effects of the segment exchange mechan-
ism described above: (1) all queries to memory and the associa-
tions resulting from the retrieval process become an integral
part of the knowledge base, (2) "important" associations are
brought to the more accessible top levels, where they are easily
remembered; and (3) "unimportant" data are pushed down into less

485

L_ - S

.. .' - " mi - m - In dl • I n nn - * <" 1 --



accessible lower loops where they are gradually forgotten. The
meaning of "important data" and "unimportant data" changes as the
user requires* because the browsing paths he selects control the
contents of the top level loop. In turn, the entire contents of

each loop act as queries to the loops one level down in the
hierarchy.

Loosely Coupled Knowledge Representation

We call the key to ALOOP's dynamic memory behavior "loosely
coupled knowledge representation." Semantic network segments are
stored and manipulated as a collection of n-tuples, the simplest
case being object-attribute-value triples. The value of one
triple can be the object of another triple. Object-object,
object-value, and value-value links are also permitted. In this .
way, these associative links can chain triples to form arbitrar-
ily complex networks.

Here is an example of three triples chained through a value-
object link, ROBIN:

NEST ----- 57 ------ ROBIN
ROBIN ----- ISA ----- BIRD

WORMS ---- 103 ----- ROBIN

The altributes of the first and third triple are page numbers of
the text on which ROBIN, NEST, and WORMS, respectively, co-occur
in close proximity. The attribute of the second triple, ISA,
indicates that ROBIN "is a" subset of the set BIRD.

The networks formed by these triple chains are not static; i.e.,
they are not always repeatable, as in other inference systems.
During normal processing, chains continuously fragment and
recombine with other chains. Why would one want a scheme for
knowledge representation and manipulation that appears so
chaotic? To answer, consider the similarity of this scheme to
human remembering, which can also be a very chaotic process..... _

At times, thoughts seem to enter and leave human consciousness
at random. As Donald Norman, cognitive psychologist at the
University of California, San Diego, has succinctly expressed:

.The various phenomena [repeated errors humans make]
I have described plus others imply that the parts of action
sequences are neither strongly ordered nor tightly coupled.
That is, I think the biological system is structured to use
ambiguous information for memory search, to allow itself to
be responsive to multiple sources of information, to combine
and overlap data paths, and to deliberately intermix what
one would have thought to be independent processing streams.

486



Although these properties can lead to errors, I believe that
they are also exactly the sort of thing that gives us much
of the power of human creativity and judgment, to allow us m

to be tolerant of noise and error, to behave flexibly, to
respond in imaginative and creative ways to novel events,
and to be able to shift our strategies and behavior when
the situation shifts." [Norman, 81).

We believe that building this loosely coupled quality of human 6
cognition into AI systems is a promising approach to achieving
the flexibility required for truly intelligent behavior.

Progress, Current Status, and Future Plans

In 1982 we designed and constructed a hardware prototype of 0
ALOOP. As Figure 4 shows, the prototype was controlled by a
host computer. User interface software running in the host,
a VAX 11/780, sent queries to the prototype. The result was
successful retrieval and display of loosely coupled semantic
knowledge stored in the ALOOP hardware.

We constructed the hardware prototype by modifying fie single
board microcomputers (Z-80) and linking them together in the
parallel processing architecture described in Figure 3. Each
loop was implemented in separate yet identical modules, each
having its own local memory (RAM and ROM). We wrote assembly
language firmware for the compare/transfer operation and added .•
electrcnics to each board, so triples could be transferred
between neighboring loops through dedicated high speed input/ . -
output (I/O) ports. We demonstrated that a very large memory
array could be constructed by replicating our single type of
module.

Additionally, we developed a simple, initial version of automatic
text analysis software to address the problem of costly intel-
lectual indexing. The program reads text, extracts key words,
and converts them to object-attribute-value triples for ALOOP.
We have shown that this software can generate triples to create
very large knowledge bases. Currently, the program's understand- . .
ing of relationships between words is limited to text proximity,
but we plan to incrementally increase the level of language
understanding as ALOOP matures.

Our ALOOP work has continued in 1983. Recently, we completed
sentence/page retrieval software that allows true on-line text
browsing. Following a four-step process, the user:

1) enters the initial key word query via keyboard;

2) examines the resulting triples display and grow
network in the direction of interest;

487



*0

-QUERYE

FoTRAN SMIS SION. 'ECHAN I S"

* RETRIEVAL
NETWORK - --- ?RANSMIS SION0

to ANSHIS SION-.*****.MECM&N Is"
TRANSMISSION..--.LC

N TRANSNS SIO01-.*****.MECHAN ISM
SWITCHING--- 5-.TRANSS Sow

NSWITCING -%T--.CRCUI TS
SWIYCHIkG----. 10---NOOE

1/0

COMMUNICATION LINK (RS-232)

ROM Z 0
VAX

V0

HOST COMPUTER ALOOP PROTOTYPE

0

* Figure 4. Associative Loop Memory (ALOOP) Hardware Prototype
Demonstration.0

3) indicates with a cursor the key words that seem
relevant (text sentences are displayed from which
the key words were extracted); and

4) expands the display to a full text pages provided
that the sentence appears relevant.

The user can switch back and forth between any of these steps to
quickly browse a text data base.

488



We are using an ALOOP software emulator to run a series of non-
real time experiments in 1983. Good progress is being made
towards understanding how to control loosely coupled knowledge
so that a human user can easily interact with the top level
contents of the ALOOP. We are also experimenting with loop
archftectures other than the tree structure in Figure 3.

By the beginning of 1984 we will have in place all of the basic
components to manipulate a large text knowledge base. We will
then begin to incrementally increase the inferential and language
understanding aspects of ALOOP. We are beginning work on a set
of procedures that will dynamically replace word proximity
relationships with semantic primitives such as PART-OF and
INSTANCE-OF. Disambiguating word meaning will be part of these
procedures.

We will also begin design of an advanced hardware prototype with
much larger memory capacity than that in our feasibility demon-
stration. The design will support a knowledge base containing a
loosely coupled mixture of n-tuple relationships (e.g., frames)
as well as triples.

Finally, we will develop an interactive graphics display for
networks containing both semantic primitives and proximity rela-
tionships. We will then experiment with the display to navigate
through and browse a multi-document text data base.

ACKNOWLEDGEMENTS

Thanks go to Wally Tao and Linda Hissam for their initiative
and their continuing hard work on the Associative Loop Memory
proj ect.

489



References:

[Brachman, 79) Roland J. Brachman, "On the epistemological status 0

of semantic networks," in Nicholas V. Findler (ed.),
Associative Networks: Representation and Use of Knowledge
by Computers, Academic Press, New York, 1979.

[Hillis, 81] W. Daniel Hillis, "The connection machine," MIT
Artificial Intelligence Laboratory, A.I. Memo No. 646, 0
September 1981.

[Norman, 81) Donald A. Norman "A psychologist views human
processing: Human errors and others phenomena suggest
processing mechanisms," invited paper, .IJCAI-8L pp.
1097-1101, Vancouver, B.C., Canada, 1981.

[Ratcl1ff, 81) Roger Ratcliff, "Parallel-processing mechanisms
and processing of organized information in human memory,"
in Hinton, G.E. and Anderson, J.A. (eds.), Parallel Models
of Associative Memory, pp. 265-283, Erlbaum Associates, . .
Hillsdale, N.J., 1981.

[Shank, 82] Roger C. Shank, Dynamic Memory: A Theory of Learn-
ing in Computers and People. Cambridge University Press,
1982.

[SIGIR, 83) "Proceedings of the sixth annual international ACM
SIGIR conference on research and development in information
retrieval," ACM, Bethesda, Md., 1983.

4 9

490 , -

"I



ABOUT THE AUTHOR

Arthur F. Griffin is a Senior Staff Engineer for Hughes
Aircraft Company Support Systems. He is responsible for
developing test and training applications of artificial
intelligence. He is the originator of the associative loop
memory concept (ALOOP) and is the principal investigator
of two projects that apply this Al technique to information
retrieval. Previously, he led an effort that developed an
interactive graphics system for displaying technical
documentation.

tS

i-e

491

It_ __ .



ON THE REQUIREMENTS OF EXPERT SYSTEMS FOR FAULT ISOLATION

Jeffrey Van Baalen
.0 Martin Marietta Aerospace

0 Mail Stop 0570
CL P.O. Box 179

Denver, Co. 80433

I. INTRODUCTION

- Martin Marietta Denver Aerospace is involved in applications oriented
research and development in artificial intelligence. The charter of the group
is to augment Martin Marietta's existing technology base with artificial
intelligence (AI). Our research and applications work Is integrated in the
sense that they drive each other In an iterative fashion. That is, DOD and
NASA applications have led us to pursue research into our Al software tool
set. This enhanced tool set has, in turn, made new applications of AI
possible. . -

Three areas of AI form our main research and development thrusts: expert

systems, natural language understanding, and planning. Our experience has
shown that applications require a mixture of techniques from these different
areas. For example, it is often appropriate to utilize a natural language
front end in expert systems applications. Also, for some planning problems, . ,0
we are employing an expert system approach.

II. EXPERT SYSTEM DEVELOPMENT TOOLS

We have found, as have many other groups involved in expert system

construction, that it is crucial to have a sophisticated development - _

environment. After establishing the requirements of anticipated NASA and DOD
expert system applications, we found that available tools did not meet our
needs. This convinced us to design and develop a rule-based system called
HAPS.

HAPS (the Hierarchical, Augmentable Production System architecture) is a
sophisticated tool designed to allow the rapid construction of rule-based
systems in real-world environments--that is, in uncontrolled environments
which require the use of tremendous amounts of both knowledge about the
application domain and expert knowledge about problem solving in that domain.

One of the major advantages that this system has over the traditional
production system implementations is the notion of goal directedness. HAPS
has a separate memory structure called goal memory, which contains a hierarchy
of goals which the system must achieve. All rules must apply in the context
of some goal; thus, RAPS rules are expressed in the formt

493



IN some particular goal context,
I.F a given set of conditions is true
rHEN perform this set of actions.

The system is initialized with a top goal, and the overall system
objective is to achieve this goal. On each cycle, a set of modifiable Goal
Select:ion Strategies are used to select the current goal, which becomes the
system's focus of attention for that cycle. When a rule is applied towards
achieving a goal, it can declare that goal to be a success or a failure, or it
can cause the goal to sprout subgoals.

Another characteristic of HAPS is the ability to construct hierarchically
structured levels of working memory. Data items can be declared local to a
particular goal. This means that they are availa.Sle for the solution of that
goal and its subgoals. When a goal is achieved, there is no longer any need
to keep the local data associated with that goal. Thus, working memory does
not clutter up with data items that are no longer needed. Also, this scheme
allows each goal to have its own world model. This permits the simultaneous
pursuit of multiple problem solutions which might ordinarily interact with
each other to produce inconsistencies.

In a similar fashion, HAPS introduces the notion of production
hierarchies. Under this scheme, a rule set can be loaded into the system at
runtime and declared local to a particular goal. This rule set is available
for the pursuit of that goal and its subgoals. Furthermore, these rule sets
can be loaded in by another rule, allowing the production hierarchy to be
extremely dynamic. The major advantage of this scheme is that it allows HAPS
to function without a decrease in level of performance in very large expert
systems, since only a small fraction of the entire rule base needs to be
processed at any given time.

HAPS is provided with a modifiable set of Goal Selection Strategies (used
to select the current goal) and Conflict Resolution Strategies (used to choose
between competing rules). Making these strategies modifiable allows the user - 7

to tailor the needs of the system to individual applications. Also, these

strategies can be changed by rules in the rule base, allowing the system to

modify its behavior in response to changes in its environment.

Finally, HAPS is equipped with a set of Alternate Memory Structures, which
can be used to store data items in the same way as standard working memory.
Examples of types of alternate memory structures are tables and arrays. These
structures make HAPS easier to interface to other existing software systems.
Also, the operations performed on these structures (for example, pattern
matching) are designed to allow HAPS to more easily interface to real-time
changing data. fti

In summary, the HAPS system is equipped with many features which make it
applicable to the development of large, sophisticated expert systems in
real-world domains.

494

S



III. EXPERT SYSTEM FOR FAULT ISOLATION

Using the HAPS programming language, we are developing two expert systems
for potential use on Space Station. The task of these two systems (in
concert) is to automate power system related functions beyond the capabilities

of traditional automation. More specifically, when married with traditional
automation techniques, these systems will significantly reduce the burden of
flight support decision making. In addition, they will allow timely reaction
to changing parameters of future complex missions (e.g., Space Station).

One system's task is to monitor a spacecraft power system, identify
parameter changes that indicate a potential fault, isolate the fault, and, if
possible, suggest appropriate workaround procedures. It is the second
system's task to adjust a spacecraft mission timellne (which dictates which
loads are activated when) in reaction to changing power system capability.
Depending on the situation, these systems may work together or separately. If
a fault occurs in the power system, the fault isolation system activates.
Following the fault isolation process, load maragement (the job of the second
expert system) may be required. If the identified fault cannot be worked
around and the fault decreases the power system capability then load
management is necessary. However, if the fault can be worked around, then the
load management expert system need not be notified. There is also the
possibility that the load management system could work alone. This happens
anytime a change in the mission effects the power system capability (e.g., if
a portion of the power system needed to be taken offline for unscheduled
maintenance). The load management and fault isolation expert systems are now
described separately. -

The load management system supplements the activities of a spacecraft .
flight operations director. This individual is faced with a variety of
questions in maintaining the health and function of a spacecraft during its .-

mission life. Examples of these questions with respect to the power system
are:

"In response to a degraded power generation capability, how should
the mission timeline be altered?"

"What changes can be made to the mission timeline to extend the
life of the batteries?"

"When is a preferable time to take specific batteries offline for
reconditioning?"

Current technology requires that all timeline generation or alteration be
performed by human experts on the ground. These activities are extremely man
intensive. This expert system is intended to decrease the man-intensive
nature of (and time required to) modify mission timelines. It is our belief
that the reasoning process necessary to modify a mission timeline is similar
to the reasoning process required to construct the original timeline.
Therefore, the system's utility with respect to premission timeline

construction is also being investigated. p.

495



The fault isolation expert system operates in reaction to changes in the
behavior of a spacecraft power system. It must be capable of isolating faults

not only in the power generation and storage system but also in the power '
busses. It has control of the power system and load control switching network
in order to test hypotheses about fault locations.

The expert system approaches fault isolation in a top-down fashion,
attempting first to isolate a fault within large portions of the system. To
do this, it considers the system as composed of a small number of complex --

elements. Each of these elements may, in turn, be composed of many distinct 0

components. The complex components are considered "black boxes" by specifying

their functional behavior and their relation to each other. Isolating a fault
in this way allows the system to consider the interaction of a small number of
elements. Once the faulty element is identified, its components are
considered in isolation from the rest of the power system. Some or all of
these may themselves be complex elements. This allows the system to work with ,
progressively smaller and more detailed portions of the power system. At each

step, the system considers the interaction of only a small number of elements,
significantly simplifying the fault isolation process. At any step in this

process, the system may propose several possible fault locations. Then it
will modify the configuration of the power system or one of the power busses
in order to determine which of its propositions are true.

To support the following discussion, consider Figure 1 which is a diagram
of the power system under consideration. Basically, there are several power
generation channels, each designed to produce the same amount of power. Each
channel has solar arrays for daytime power generation and batteries for "
nighttime. Part of the power generated during the day is used to charge the
batteries for subsequent nighttime power generation. The power channels each
feed the main power bus, which, in turn, distributes this power to the load
busses. Each load bus distributes power to potentially many loads which are
connected to it. A switching network enables any power channel, any load bus,

or any load to be isolated. There is also some switching capability in each
power channel for isolating portions of the solar panels, the batteries, etc.
The following two examples illustrate the fault isolation process. They are

intended to illustrate the top-down isolation approach as well as many other
features that will be explained.

Suppose that the switching transistors of a regulator on one of the power
channels open circuit during a heavy load period at the beginning of - S ..
daylight. This will cause the output of this channel to drop to zero. Since
this is a heavy load time, the load bus voltages will be drawn out of
specification. Thus, the fault will be manifested initially as out of
specifications on the load busses. The expert system now considers the power
system as composed of a power generation element, a main power bus, and a load

element. Upon investigation of the input/output parameters of these three
elements, one of two possibilities may arise. If the current flowing through
the load element does not appear unreasonable, then the expert system
hypothesizes that the fault is in the power generation element. It now
proceeds to a more detailed level of analysis of the main power bus element.
Now it considers this bus to be composed of several sections--each

corresponding to a power channel. The system now utilizes the switches -

between the main power bus sections to isolate each channel systematically.
If one of these channels does not return to normal, then the fault has been
isolated to that power channel and analysis can continue into that element to
determine that the regulator is at fault.

496 0



POWER SYSTEM CONFIGURATION

pme

P~L9 -

Ado C~rm,

Figure 1.

497



POWER SYSTEM CONFIGURATION (CONTINUED)

MAW JW

J~r-1M
71kw ~

IV0 4NT&V Zcdv

M AW 5 fV"AA .

Figure 1(cont.)

498



Suppose, however, that no problem can be found with any power channel.
Then the current readings for the load element are assumed to De wrong and
analysis proceeds to consider each of the load busses(the load element in more
detail). Finally, the suspect load bus is considered in more detail and the

fault is isolated to a load or cabling on that bus. If a faulty load is
present, then the expert system can halt fault propagation by switching the

load off. If cabling is at fault, then fault propagation can be halted by
switching to redundant cabling.

As a second example of the expert system's capabilities, consider its
actions when it detects two battery measurements which are out of range. The
current is very low and the voltage is very high. The indication is that the

battery is open circuit. In this example, the ability to measure these
parameters has allowed the expert system to bypass some of the top-down
process. However, it continues to employ this process to consider the cause

of this situation. Inspecting a more detailed model of the relevant power
channel, the situation could be caused by one of two things--the isolation 0

diode could have failed open, or the cabling could be open circuited. The

expert system can now propose a test to determine which possibility is the
case. It proposes to close the charging relay, knowing that if the
measurements return to within specification, then the isolation diode is the

failed element. In this case, the system has already identified a
workaround. Otherwise, there is a cabling fault requiring a replacement of

cable.

To see how the expert system is capable of this type of analysis, it is

necessary to briefly discuss its organization. It has access to a
hierarchical model of the power system. The model supports the top down fault
isolation process. At each level, the model consists of "black boxes" and
connections between them. Each box is described functionally and the
connections between them are described as supporting information flow. That

is, each box is viewed as a functional element with a description of how it

effects the information flowing in to create the information flowing out.
This technique has been shown to be sufficiently general to characterize any .

system for fault isolation purposes. During its operation, relevant portions
of levels of the hierarchy are read into the HAPS working memory to support

the expert system's reasoning process.

The reasoning mechanisms of the expert system are, of course, encoded in
the FHAPS rule base. There are two classes of rules used by the system: 0
generic fault isolation rules, and rules specific to the type of power
system. These rules have been extracted from power system experts. The model

and rule base are embedded in the framework of HAPS to yield the expert system

depicted in Figure 2.

IV. APPLICATION OF EXPERT SYSTEMS TO FAULT ISOLATION AT THE DEPOT

The techniques being developed for the fault isolation expert system are

sufficiently general to apply to a variety of fault isolation problems. In
particular, we have considered use of such a system in conjunction with
conventional ATE for fault isolation at the depot. We believe that an ATE
system augmented with an expert system of the type previously described could
significantly increase throughput at the depot. In fact, the time that each -

499



FAULT ISOLATION EXPERT SYSTEM CONFIGURATION

SCRATCH GENERIC

PAD FAULT

ISOLATION
POWER RULES

SYSTEM 4
MODEL POWER

SYSTEM
Fl
RULES

Figure 2.

500



system under test would have to spend at the depot would be increased in two
ways. First, it can easily be shown that the top-down fault isolation
technique will find the fault in a failed unit in far less time than
performing a brute force battery of tests (as is done by current ATE systems).
Second, and perhaps more important, the additional diagnosis step that 0
requires a human diagnostician could be virtually eliminated. As in the
expert system described above, an ATE expert system could go beyond simple
fault detection to perform much of the diagnosis that currently requires a
human diagnostician at the depot. Furthermore, in extreme cases where the
expert system fails to completely isolate a fault, the system could explain
its analysis to a human diagnostician. This could significantly decrease the
time a human diagnostician would need to spend in subsequent analysis.

An expert system with these desired attributes would be similar to the
power system fault isolation system previously described. This expert system
would be imbedded in a hardware system, including a computer and a device with
capabilities similar to existing ATE. Existing ATE software would be
replaced/augmented by the expert system. The expert system's knowledge base
would contain a specification of the general capabilities of its ATE front
end, a specification the system under test, and a specification of the ATE
connector. Its rule base would include fault isolation rules extracted from
the diagnostician. Some of these would be general rules concerning the fault
isolation process and others would be specific to the system under test(see - .
Figure 3). This system could iteratively identify a test to be performed on
the SUT, perform the test, and analyze the results (thereby determining the
need for additional tests).

The above discussion Identifies two Important advantages of the described
expert system approach to fault isolation at the depot. It could 0
significantly increase the throughput at the depot by decreasing the time to
identify a fault and by decreasing the necessary involvement of
diagnosticians. Also, in instances where a diagnostician needs to consider a
fault that the expert system is unable to find, it is able to explain its
analysis in the expert's terms. This capability has implications with respect
to a tutoring. These explanations can serve in some situations to assist a
novice diagnostician in techniques he is unfamiliar with. However, much
additional work must be done not only on explanation but also on other issues
in the realm of computer aided instruction before this type of system can be
used as an effective tutor.

There are additional benefits realized with the expert system approach

that could significantly decrease certain costs and manpower currently
incurred at the depot. Some of these are now discussed. First, once an ATE
expert system has been developed employing the described approach, it will
become extremely cost effective to add new SUTs. This is due to the fact that
one need only construct a hierarchical model of the device(most of the
information for which comes from design documentation) and replace the device
specific rule set. All of the generic fault isolation rules can be maintained
for all devices. Second, if changes need to be made to the logic of the
expert system or to its model of a device, this can be done very rapidly at
the depot. Virtually eliminating expensive software modification costs. This
is principally due to the user friendly nature(high level) of this data. Just
as rules are an extremely understandable representation of the logic of the
expert system, so the model is an understandable representation of the SUT.

501



I 0

ATE EXPERT SYSTEM

k ~CRATCH GENERIC
FAULT

ATE ISOLATION
CAPABILITY RULES

ADATORCONF IGURATI

UT SPECIFIC

j ____ RULES

aFigure 3.-

502



V. Conclusion

This paper discusses one route to introduce expert system technology into
the area of device maintenance. It relates the experience of Martin Marietta 0
Denver Aerospace's artificial intelligence group in its attempts to build
expert systems for complex, real world problems. Based on our experience, we
found it necessary to develop a rule based system tool called HAPS which
extends the expert system paradigm in several ways. Using HAPS we are
developing a number of expert systems. One of these systems performs fault
isolation on a spacecraft power system. We believe that this problem is
closely related to the maintenance problem.

The paper proceeds with an example of how to extend the expert system
currently under development for fault isolation at the depot. The potential
benefits of the application of expert systems are described. These include:

- increased throughput at the depot,
- decreased cost to add new SUTs to the expert systems diagnosis 6

repertoire,
- decreased cost to change the system's logic or SUT model,
- and an explanation capability.

IL0

503

a . . . . . I I I II | I I - I I I I . . . . . I | " . .. . . Ili I S



ABOUT THE AUTHOR

3effrey Van Baalen has headed the Artificial Intelligence
Group in the Advanced Automation Technology Section of
Martin Marietta Denver Aerospace since its inception in
1980. Under his direction, the group has begun the
construction of an integrated environment for the
development of AI software systems. A number of natural
language interfaces have been developed and a number of
expert systems are under development, notably an expert
system for satellite fault isolation. Mr. Van Baalen has
also initiated research in natural language understanding
and in the use of meta knowledge in decision making
systems.

5-0

• 504

D --



AUTHOR INDEX

Antonelli, D. 451 Laf fey, T. 429
Lewis, 3. 415

Bonissone, P. 397
Bylander, T. 131 Maxion, R. 257McGrath, M. 15 ....

Cantone, R. 341 Miller, F. 421

Chandrasekaran, B. 117 Milne, R. 287

Clancey, W. 181 Moorthy, V. 117

Copp, D. 421 Morgan, M. 363

Coppola, A. 23 Pau, L. 171-

Dallman, B. 275 Perkins, W. 429 0

Davis, R. 97, 109 Polit, S. 97
Davison, 3. 293 Psotka, 3. 305
De3ong, K. 45
de Kleer, J. 83 Rouse, W. 193

Feurzeig, W. 189 Shirley, M. 97 0

Firschein, 0. 429 Shrobe, H. 97
Frederiksen, 3. 189 Shumaker, R. 317

Smillie, R. 353
Georgeff, M. 153
Griffin, A. 481 Tanner, M. 131
Gross, P. 55 Towne, D. 215 0

Halff, H. 67 Van Baalen, 3. 493

Hamscher, W. 97 Vesonder, G. 421

Hinchman, 3. 363
Hollan, 3. 361 Wieckert, K. 97
Horwitz, P. 189 Williams, T. 381 - -

White, B. 189
Kieras, D. 227 Z
Kulp, B. 1 Zielinski, 3. 421
Kunert, 3. 331

50

505

* .*.. ~



LIST OF PARTICIPANTS

Jacob A. Adams Ruth Bardenstein

Manager, Marketing The Analytic Sciences Corp. (TASC)

RCA Corporation One Jacob Way

Building 10-7-6 Reading, MA 01867

Delaware & Cooper Streets David R. Baum
Camden, NJ 08102 Principal Research Scientist

Dr. Robert H. Ahlers Honeywell Systems and Research Center

Research Psychologist MN17-2318

Naval Training Equipment Center 2600 Ridgway Parkway

Human Factors Laboratory Code N-71 Minneapolis, MN 55413

Orlando, FL 32813 Dr. Piero Bonissone 0

Dr. James Alexander General Electric
Software Engineer Corporate Research and Development

Tektronix, Inc. T River Road

P.O. Box 500, M/S 50-662 Building 37-567
Beaverton, OR 97077 Schenectady, NY 12345

Dr. Earl Alluisi Col. Alfred Boyd, Jr.

Chief Scientist Air Force Human Resources Laboratory
Air Force Human Resources Laboratory AFHRL/CC
AFHRL/CCN Brooks AFB, TX 78235
Brooks AFB, TX 78235

Eric J. Braude
David Antonelli Manager, Software Technology
Research Analyst Laboratory
Boeing Aerospace Company RCA Corporation

P.O. Box 3999, Mail Stop 82-91 Building 10-7-6

Seattle, WA 98124 Delaware & Cooper Streets •
Camden, NJ 08102

Dr. Pat Baggett
Department of Psychology John Brock

University of Colorado Chief, Command and Decision Technology

Boulder, CO 80309 Honeywell Systems and Research Center
2600 Ridgway Parkway, 17-2318

" Eva L. Baker Minneapolis, MN 55413
Professor and Director,

Center for the Study of Evaluation Dr. John Seely Brown

University of California at Xerox PARC
Los Angeles (UJCLA) 3333 Coyote Hill Road

405 Hilgard Avenue Palo Alto, CA 94304
Los Angeles, CA 90024

7

~,fl7



770

Dr. Hans Brunner Brian Dallman
MN 19-T330 Air Force Human Resources Laboratory
Honeywell AFHRL/IDE
1700 W. Highway 36 Lowry AFB, CO 80230
Roseville, MN 55113

Randy Davis
Maj. Hugh Burns Software Manager -. -
Air Force Human Resources Laboratory LASP - University of Colorado
AFHRL/IDE 5525 Central Avenue
Lowry AFB, CO 80230 Boulder, CO 80301

Richard Cantone John Davison
Navy Center for Applied Research in Air Force Flight Dynamics Laboratory
Artificial Intelligence AFWAL/FIGL

U.S. Naval Research Laboratory Wright-Patterson AFB, OH 45433
Code 7510
Washington, DC 20375 Dr. Ken DeJong

Navy Center for Applied Research in
Ron Chandler Artificial Intelligence
MN 19-T330 U.S. Naval Research Laboratory
Honeywell Code 7510
1700 W. Highway 36 Washington, DC 20375
Roseville, MN 55113

Dr. Johan De Kleer
Dr. B. Chandrasekaran Xerox PARC
Dept. of Computer and Information Science 3333 Coyote Hill Road
Ohio State University Palo Alto, CA 94304
Columbus, OH 43210 E D t

Eric Dietrich ..

Anthony Coppola Senior Engineer, Al Unit
Rome Air Development Center Martin Marietta
RADC/RBET Denver, CO 80201
Griffiss AFB, NY 13441

Dr. John Dimmock
Dr. James N. Cronholm Office of Naval Research
Psychologist Code QOB
Project Manager for Training Devices Chief of Naval Research
(PMTRADE) 800 N. Quincy

ATTN: DRCPM-TND-ET (Dr. Cronholm) Arlington, VA 22217
Naval Training Center
Orlando, FL 32813 Samuel A. DiNitto, Jr.

Chief, C2 Software Technology
Col. Graham Crow Rome Air Development Center
Air Force Human Resources Laboratory RADC/COE
AFHRL/ID Griffiss AFB, NY 13441
Lowry AFB, CO 80230

Clark V. Dohner
Project Manager
Electric Power Research Institute
3412 Hillview Avenue
Palo Alto, CA 94303

508

L 0



[S

Timothy D. Evans Dr. Michael Georgeff
Computer Scientist Artificial Intelligence Center
U.S. Army Research Office SRI International
P.O. Box 12211 333 Ravenswood Avenue S
Research Triangle Park, NC 27701 Menlo Park, CA 94025

Wallace Feurzeig David Glenn
Bolt, Beranek and Newman, Inc. Director, Research Department (N-7)
50 Moulton Street Naval Training Equipment Center
Cambridge, MA 02138 Orlando, FL 32813

Dr. Jude Franklin Arthur F. Griffin
Navy Center for Applied Research in Hughes Research Laboratory

Artificial Intelligence Support Systems
U.S. Naval Research Laboratory P.O. Box 9399
Washington, DC 20375 Building Al

Mail Station 3C923
John R. Frederiksen Long Beach, CA 90810
Senior Scientist
Bolt, Beranek and Newman, Inc. Paul Gross
10 Moulton Street Technical Director, TAMS Program Office
Cambridge, MA 02138 Naval Electronic Systems Command S

Washington, DC 20363
Michael 3. Freiling
Assistant Professor David Gunning
Oregon State University Air Force Human Resources Laboratory
Computer Science Dept. AFHRLILR
Corvallis, OR 97331 Wright-Patterson AFB, OH 45433
Dr. Edward A. Friedman
Vice President for Academic Affairs Dr. Henry Halff
Stevens Institute of Technology Office of Naval Research
Hoboken, NJ 07030 ONR P&TRP

800 N. Quincy Street
Jonathan A. Gaev Arlington, VA 22217
Engineer
RCA Corporation John Hinchman
Building 10-7-6 General Dynamics Electronics Division
Delaware & Cooper Streets P.O. Box 85106
Camden, NJ 08102 San Diego, CA 92138

Dr. Michael Genesereth Dr. Douglas Hoecker
Department of Computer Science Research Scientist
Stanford University Westinghouse Research and Development

* Stanford, CA 94305 Center
1310 Beulah Road

Russell M. Genet Pittsburgh, PA 15235
Senior Scientist

. Air Force Human Resources Laboratory Robert Hoffman
* Logistics Research Division Sperry

AFHRL/LRA P.O. Box 4648
Wright-Patterson AFB, OH 45433 Clearwater, FL 33518

ATTN: Bob Hoffman Mail Stop 109A

509

L o



.1

Dr. James D. Hollan Jerry Kunert

Navy Personnel Research and Development Naval Air Engineering Center

Center Code 92A3
NPRDC (Code 13) Lakehurst, NJ 08733 0
San Diego, CA 92152 Robert G. Kurkjian

Dr. Robert Keller Manager, Autotesting Laboratory

Principal Research Associate Electro-optical and Data Systems Group

Denver Research Institute/SSRE Hughes Aircraft Company

University of Denver El Segundo, CA 90245
Denver, CO 80208

Thomas J. Laffey

Tom Kelly Senior Scientist
Deputy Chief, Flight and Maintenance Lockheed Missile and Space Company

Simulator Branch Lockheed Palo Alto Research Labs -

AS D/E NETS 3251 Hanover Street B/201 0/52-53 0
Wright-Patterson AFB, OH 45433 Palo Alto, CA 94304

Dr. David Kieras Roy H. Leach
Department of Psychology Manager, Advance Program Development

University of Arizona Hughes Aircraft Company

Tucson, AZ 85721 P.O. Box 9399
Bldg. Al, M/S 3C923

Dr. Edward Kim Long Beach, CA 90810
Senior Scientist
Logistics Systems Engineering Department John Lewis
Engineering Service and Support Diision Navy Fleet Analysis Center •

Ground System Group Corona, CA 91720 .
Hughes Aircraft Co.
Long Beach, CA 90810 John W. Lewis, Ph.D.

Computer Scientist

Dr. Walter Kintsch General Electric Company

Institute of Cognitive Science Corporate Research and Development

Campus Box 345 Building #37, Room 561
University of Colorado - Boulder Schenectady, NY 12345
Boulder, CO 80309

Fred Liguori
Pamela 3. Kleinosky ATE Branch Head
Engineer Naval Air Engineering Center
RCA Corporation Lakehurst, NJ 08733 •
Building 10-7-6
Delaware & Cooper Streets Dr. Azad Madni
Camden, NJ 08102 Director of Automation and Decisions

Systems Group
Dr. Bernard Kuip Perceptronics, Inc.
Chief Scientist 6271 Variel Avenue
Headquarters Air Force Systems Command Woodland Hills, CA 91367
AFSC/DLZ
Andrews AFB Dr. Anthony Magliero
Washington, DC 20334 Applied Science Associates, Inc. (ASA)

P.O. Box 158
Valencia, PA 16059 . -

510



John G. Manelis Dave Mullens
Director, Electronic Design SME Control Center Manager
General Dynamics Electronics Division LASP - University of Colorado
P.O. Box 85310 5525 Central Avenue
San Diego, CA 92138-5310 Mail Zone Boulder, CO 80301
7202R

Roy H. Nesson

* Roy Maxion Hughes Aircraft Company
Institute of Cognitive Science P.O. Box 902
Campus Box 345 El Segundo, CA 90245
University of Colorado - Boulder
Boulder, CO 80309 George Neuman

Giordano Associates
Michael McGrath 2301 Jefferson Davis Highway
Office of the Secretary of Defense Suite 1432
OASD (MRL&L) WS Arlington, VA 22202 6
Room 2B322
Pentagon Dr. Harold F. O'Neil, Jr.
Washington, DC 20301 Director, Training Research Laboratory

U.S. Army Research Institute

Dr. James S. McMichael 5001 Eisenhower Avenue
Director, Training Research Laboratory Alexandria, VA 22333 6
Navy Personnel Research and

Development Center Hilarie Orman
San Diego, CA 92152 Member of the Technical Staff

The Aerospace Corporation
James Melvin P.O. Box 92957 -

, Engineering Section Head Los Angeles, CA 90009
Sperry
P.O. Box 4648 Dr. Douglas R. Partridge
Clearwater, FL 33518 Hughes Research Laboratory

3011 Malibu Canyon Road
Fred D. Miller Malibu, CA 90265
Member of Technical Staff
Bell Laboratories Dr. L.F. Pau
Whippany Road Senior Scientist
Whippany, NJ 07981 Battelle Memorial Institute

7 Route De Drize

Dr. Jim Miller CH-1227 Carouge
Computer*Thought Switzerland
1721 W. Piano Parkway, Suite 125
Piano, TX 75075 Lt. Col. David L. Payne

Chief, Test & Training Research Branch
Capt. Rob Milne Manpower and Personnel Division

* Air Force Institute of Technology Air Force Human Resources Laboratory
AFIT/ENG AFHRL/MOE
Wright-Patterson AFB, OH 45433 Brooks AFB, TX 78235

511



S

Dr. Frank Pipitone Bob Reich
Navy Center for Applied Research in McDonnell Douglas Automation
Artificial Intelligence Mail Code K-19-86

U.S. Naval Research Laboratory 10803 Hope Street
Washington, DC 20375 Cypress, CA 90630

Dr. Alan D. Pisano Dale W. Richards
The Analytic Sciences Corporation (TASC) Electronics Engineer
One Jacob Way Rome Air Development Center
Reading, MA 01867 RBET

Griffiss AFB, NY 13441
William A. Plice
Project Chief Dr. Jeff Richardson
Honeywell, Inc. Research Scientist
P.O. Box 312 Denver Research Institute/SSRE
Minneapolis, MN 55440 University of Denver

Denver, CO 80208
Dr. Peter Politakis
Digital Equipment Corporation Dr. William Rouse
200 Forest Street Center for Man-Machine Systems Research
Box 1001 Georgia Institute of Technology
Marlboro, MA 01752 Atlanta, GA 30332

Lt. Col. David L. Pohlman Robert G. Sarkies
Deputy Director Manager, Research and Program Support
Joint Services Computer Based Training Boeing Aerospace Company

Applications and Support Activity P.O. Box 3999, Mail Stop 82-91
Orlando, FL 32813 Seattle, WA 98124

Dr. Peter Poison Dr. Ben Schwartz
Institute of Cognitive Science Systems Exploration, Inc.
Campus Box 345 216 Apple Blossom Court
University of Colorado - Boulder Vienna, VA 22180
Boulder, CO 80309

Dr. Randall Shumaker
Dr. Joe Psotka Naval Air Systems Command
Army Research Institute NAVAIRSYSCOM (Air-310G)
ARI PERI-BR Washington, DC 20361
5001 Eisenhower Avenue 0
Alexandria, VA 22333 Dr. Robert Smillie

Navy Personnel Research and
William R. Ramage Development Center
Engineer NPRDC Code 17E
Westinghouse Research and San Diego, CA 92152

Development Center 0..
1310 Beulah Road Tom Sparn
Pittsburgh, PA 15235 Professional Research Assistant

LASP - University of Colorado
5525 Central Avenue
Boulder, CO 80301

512

% . .



George 3. Sprague Jeffrey Van Baalen
Staff Engineer Martin Marietta Aerospace
Harris Corporation, GSS Division Mail Stop 0570
6801 Jericho Turnpike P.O. Box 179
Syosset, NY 11791 Denver, CO 80201

Dr. David Stone Dr. Billy E. Welch

ID Supervisor Chief Scientist
Hazeltine Corporation HQ Aerospace Medical Division
7680 Old Springhouse Road HQ AMD/CCN
McLean, VA 22102 Brooks AFB, TX 78235

Charles F. Summer Dr. Keith T. Wescourt
Electronics Engineer Senior Computer Scientist
Naval Training Equipment Center Perceptronics, Inc.
Code N-74 545 Middlefield Road
Orlando, FL 32813 Suite 140

Menlo Park, CA 94025
Col. Donald Tetmeyer
Air Force Human Resources Laboratory Douglas A. White
AFHRL/LR Rome Air Development Center
Wright-Patterson AFB, OH 45433 RADC/COE

Griffiss AFB, NY 13441
Dr. Doug M. Towne
Director Thomas Williams
Behavioral Technology Laboratory Smart Systems Technology (SST)
University of Southern California 6870 Elm Street
1845 S. Elena Avenue McLean, VA 22101
Redondo Beach, CA 90277 Dr. Milton WoodDrtMltnroo
Joel Trimble Air Force Human Resources Laboratory
Office of Naval Research AFHRL/OTT
Code 240 Williams AFB, AZ 85224
800 N. Quincy
Arlington, VA 22217 Dr. Joseph Yasutake

Air Force Human Resources Laboratory
John Ulrich AFHRLIID
Manager, Knowledge Based Systems Group Lowry AFB, CO 80230
Tektronix, Inc.
P.O. Box 500, M/S 50-662
Beaverton, OR 97077

5,13 U S GOVERNM I PHINIING OFfICI 1984-769-056/430



1, M I r 1 10

ir

.49>

ql

Vo

TI FILM

6, tel(

14

f 0
91irl , , ,

ix

lk

'4


